cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051870 18-gonal (or octadecagonal) numbers: a(n) = n*(8*n-7).

This page as a plain text file.
%I A051870 #81 May 04 2021 01:04:17
%S A051870 0,1,18,51,100,165,246,343,456,585,730,891,1068,1261,1470,1695,1936,
%T A051870 2193,2466,2755,3060,3381,3718,4071,4440,4825,5226,5643,6076,6525,
%U A051870 6990,7471,7968,8481,9010,9555,10116,10693,11286,11895,12520
%N A051870 18-gonal (or octadecagonal) numbers: a(n) = n*(8*n-7).
%C A051870 Also, sequence found by reading the segment (0, 1) together with the line from 1, in the direction 1, 18, ..., in the square spiral whose vertices are the triangular numbers A000217. - _Omar E. Pol_, Apr 26 2008
%C A051870 This sequence does not contain any triangular numbers other than 0 and 1. See A188892. - _T. D. Noe_, Apr 13 2011
%C A051870 Also sequence found by reading the line from 0, in the direction 0, 18, ... and the parallel line from 1, in the direction 1, 51, ..., in the square spiral whose vertices are the generalized 18-gonal numbers. - _Omar E. Pol_, Jul 18 2012
%C A051870 Partial sums of 16n + 1 (with offset 0), compare A005570. - _Jeremy Gardiner_, Aug 04 2012
%C A051870 All x values for Diophantine equation 32*x + 49 = y^2 are given by this sequence and A139278. - _Bruno Berselli_, Nov 11 2014
%C A051870 This is also a star enneagonal number: a(n) = A001106(n) + 9*A000217(n-1). - _Luciano Ancora_, Mar 30 2015
%D A051870 Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
%D A051870 Elena Deza and Michel Marie Deza, Figurate numbers, World Scientific Publishing, 2012, page 6.
%H A051870 Jeremy Gardiner, <a href="/A051870/b051870.txt">Table of n, a(n) for n = 0..999</a>
%H A051870 Omar E. Pol, <a href="http://www.polprimos.com">Determinacion geometrica de los numeros primos y perfectos</a>.
%H A051870 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number#Table_of_values">Polygonal number</a>.
%H A051870 <a href="/index/Pol#polygonal_numbers">Index to sequences related to polygonal numbers</a>
%H A051870 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A051870 G.f.: x*(1+15*x)/(1-x)^3. - _Bruno Berselli_, Feb 04 2011
%F A051870 a(n) = 16*n + a(n-1) - 15, with n > 0, a(0) = 0. - _Vincenzo Librandi_, Aug 06 2010
%F A051870 a(16*a(n)+121*n+1) = a(16*a(n)+121*n) + a(16*n+1). - _Vladimir Shevelev_, Jan 24 2014
%F A051870 E.g.f.: (8*x^2 + x)*exp(x). - _G. C. Greubel_, Jul 18 2017
%F A051870 Sum_{n>=1} 1/a(n) = ((1+sqrt(2))*Pi + 2*sqrt(2)*arccoth(sqrt(2)) + 8*log(2))/14. - _Amiram Eldar_, Oct 20 2020
%F A051870 Product_{n>=2} (1 - 1/a(n)) = 8/9. - _Amiram Eldar_, Jan 22 2021
%p A051870 A051870 := proc(n) n*(8*n-7) ; end proc: seq(A051870(n),n=0..30) ; # _R. J. Mathar_, Feb 05 2011
%t A051870 Table[n (8 n - 7), {n, 0, 40}] (* _Bruno Berselli_, Nov 11 2014 *)
%o A051870 (PARI) a(n)=n*(8*n-7) \\ _Charles R Greathouse IV_, Jul 19 2011
%Y A051870 Cf. A014634, A014635, A033585, A033586, A033587, A035008, A069129, A085250, A129271-A129278, A139278.
%K A051870 nonn,easy
%O A051870 0,3
%A A051870 _N. J. A. Sloane_, Dec 15 1999