A051894 Number of monic polynomials with integer coefficients of degree n with all roots in unit disc.
1, 3, 9, 19, 43, 81, 159, 277, 501, 831, 1415, 2253, 3673, 5675, 8933, 13447, 20581, 30335, 45345, 65611, 96143, 136941, 197221, 276983, 392949, 545119, 763081, 1046835, 1448085, 1966831, 2691697, 3622683, 4909989, 6553615, 8804153
Offset: 0
Examples
a(1)=3 because the only monic, linear, polynomials with coefficients in Z and all their roots in the unit disc are f(z)=z, g(z)=z-1, h(z)=z+1.
References
- Pantelis A. Damianou, Monic polynomials in Z[x] with roots in the unit disc, Technical Report TR\16\1999, University of Cyprus.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Pantelis A. Damianou, Monic polynomials in Z[x] with roots in the unit disc, American Math. Monthly, 108, 253-257 (2001).
Programs
-
Mathematica
max = 40; CoefficientList[Product[1/(1 - x^EulerPhi[k]), {k, 1, 5max}] + O[x]^max, x] // Accumulate (* Jean-François Alcover, Apr 14 2017 *)
-
PARI
N=66; x='x+O('x^N); Ph(n)=if(n==0,1,eulerphi(n)); Vec(1/prod(n=0,N,1-x^Ph(n))) \\ Joerg Arndt, Jul 10 2015
Formula
Euler transform of b(n) where b(n) = A014197(n) except for n=1, where b(n) = 3 instead of 2; cumulative sum of A120963. - Franklin T. Adams-Watters, Jul 19 2006
log(a(n)) ~ sqrt(105*zeta(3)*n)/Pi. - Vaclav Kotesovec, Sep 02 2021
Extensions
More terms from Franklin T. Adams-Watters, Jul 19 2006
Comments