cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051895 Partial sums of second pentagonal numbers with even index (A049453).

This page as a plain text file.
%I A051895 #33 Sep 08 2022 08:44:59
%S A051895 0,7,33,90,190,345,567,868,1260,1755,2365,3102,3978,5005,6195,7560,
%T A051895 9112,10863,12825,15010,17430,20097,23023,26220,29700,33475,37557,
%U A051895 41958,46690,51765,57195,62992,69168,75735,82705,90090,97902,106153,114855,124020,133660
%N A051895 Partial sums of second pentagonal numbers with even index (A049453).
%C A051895 For A049453(n+1), the corresponding formula would be a(n)=(n+1)*(6*n+7) and its partial sums would be given by a(n)=(n+1)*(n+2)*(4*n+7)/2.
%D A051895 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%H A051895 Vincenzo Librandi, <a href="/A051895/b051895.txt">Table of n, a(n) for n = 0..1000</a>
%H A051895 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A051895 a(n) = n*(n+1)*(4*n+3)/2.
%F A051895 G.f.: x*(7+5*x)/(1-x)^4. - _Colin Barker_, Jan 12 2012
%F A051895 a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - _Vincenzo Librandi_, Apr 27 2012
%F A051895 a(n) = A002492(n) + A016061(n). - _J. M. Bergot_, Apr 20 2018
%t A051895 Table[(n(4n-1)(n-1))/2,{n,40}]  (* _Harvey P. Dale_, Mar 11 2011 *)
%t A051895 CoefficientList[Series[x*(7+5*x)/(1-x)^4,{x,0,50}],x] (* _Vincenzo Librandi_, Apr 27 2012 *)
%o A051895 (Magma) I:=[0, 7, 33, 90]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // _Vincenzo Librandi_, Apr 27 2012
%o A051895 (PARI) a(n) = n*(n+1)*(4*n+3)/2; \\ _Altug Alkan_, Apr 20 2018
%Y A051895 Cf. A002492, A016061, A017605, A049453.
%K A051895 nonn,easy
%O A051895 0,2
%A A051895 _Barry E. Williams_, Dec 17 1999