A051917 Inverse of n under Nim (or Conway) multiplication.
1, 3, 2, 15, 12, 9, 11, 10, 6, 8, 7, 5, 14, 13, 4, 170, 160, 109, 107, 131, 139, 116, 115, 228, 234, 92, 89, 73, 77, 220, 209, 85, 214, 80, 219, 199, 179, 203, 184, 66, 226, 70, 236, 156, 247, 149, 248, 255, 182, 189, 240, 120, 164, 174, 127, 142, 100, 98, 134
Offset: 1
Examples
a(4)=15 because the Conway product of 4 and 15 is 1. And a(15)=4.
References
- E. R. Berlekamp, J. H. Conway and R. K. Guy, ``Winning Ways'', p. 443.
- J. H. Conway, ``On Numbers and Games'', chapter 6.
Links
- Paul Tek, Table of n, a(n) for n = 1..255
- David A. Madore, Notes on game theory
- Index entries for sequences related to Nim-multiplication
Crossrefs
Cf. A051776.
Extensions
More terms from John W. Layman, Mar 01 2001
Comments