This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051928 #25 Sep 13 2023 12:21:19 %S A051928 4,1,13,34,121,391,1300,4285,14161,46762,154453,510115,1684804, %T A051928 5564521,18378373,60699634,200477281,662131471,2186871700,7222746565, %U A051928 23855111401,78788080762,260219353693,859446141835,2838557779204,9375119479441,30963916217533 %N A051928 Number of independent sets of vertices in graph K_3 X C_n (n > 2). %H A051928 Colin Barker, <a href="/A051928/b051928.txt">Table of n, a(n) for n = 0..1000</a> %H A051928 C. Bautista-Ramos and C. Guillen-Galvan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Bautista/bautista4.html">Fibonacci numbers of generalized Zykov sums</a>, J. Integer Seq., 15 (2012), Article 12.7.8. %H A051928 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,4,1). %F A051928 a(n) = 2*a(n-1) + 4*a(n-2) + a(n-3). %F A051928 G.f.: (4-7*x-5*x^2)/((1+x)*(1-3*x-x^2)). - _Colin Barker_, May 22 2012 %F A051928 a(n) = 2*(-1)^n + ((3-sqrt(13))/2)^n + ((3+sqrt(13))/2)^n. - _Colin Barker_, May 11 2017 %F A051928 a(n) = A006497+2*(-1)^n. - _R. J. Mathar_, Oct 20 2017 %t A051928 LinearRecurrence[{2,4,1},{4,1,13},30] (* _Harvey P. Dale_, Nov 20 2021 *) %o A051928 (PARI) Vec((4-7*x-5*x^2)/((1+x)*(1-3*x-x^2)) + O(x^30)) \\ _Colin Barker_, May 11 2017 %Y A051928 Row 3 of A287376. %K A051928 easy,nonn %O A051928 0,1 %A A051928 _Stephen G Penrice_, Dec 19 1999