cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A051929 Number of independent sets of vertices in graph K_4 X C_n (n > 2).

This page as a plain text file.
%I A051929 #18 Jul 02 2025 16:01:58
%S A051929 5,1,21,73,325,1361,5781,24473,103685,439201,1860501,7881193,33385285,
%T A051929 141422321,599074581,2537720633,10749957125,45537549121,192900153621,
%U A051929 817138163593,3461452808005,14662949395601,62113250390421,263115950957273,1114577054219525
%N A051929 Number of independent sets of vertices in graph K_4 X C_n (n > 2).
%H A051929 Colin Barker, <a href="/A051929/b051929.txt">Table of n, a(n) for n = 0..1000</a>
%H A051929 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,5,1).
%F A051929 a(n) = 3*a(n-1) + 5*a(n-2) + a(n-3).
%F A051929 From _Colin Barker_, May 22 2012: (Start)
%F A051929 a(n) = (3*(-1)^n+(2-sqrt(5))^n+(2+sqrt(5))^n).
%F A051929 G.f.: (5 - 14*x - 7*x^2) / ((1 + x)*(1 - 4*x - x^2)).
%F A051929 (End)
%o A051929 (PARI) Vec((5 - 14*x - 7*x^2) / ((1 + x)*(1 - 4*x - x^2)) + O(x^30)) \\ _Colin Barker_, May 11 2017
%Y A051929 Row 4 of A287376.
%K A051929 easy,nonn
%O A051929 0,1
%A A051929 _Stephen G Penrice_, Dec 19 1999
%E A051929 More terms from _James Sellers_, Dec 20 1999