This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A051942 #70 Sep 28 2023 08:17:39 %S A051942 0,10,21,33,46,60,75,91,108,126,145,165,186,208,231,255,280,306,333, %T A051942 361,390,420,451,483,516,550,585,621,658,696,735,775,816,858,901,945, %U A051942 990,1036,1083,1131,1180,1230,1281,1333,1386,1440,1495,1551,1608,1666 %N A051942 a(n) = n*(n+1)/2 - 45. %H A051942 G. C. Greubel, <a href="/A051942/b051942.txt">Table of n, a(n) for n = 9..1000</a> %H A051942 Project Euler, <a href="https://projecteuler.net/problem=834">Problem 834: Add and Divide</a>. %H A051942 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A051942 a(n) = (n^2 + n - 90)/2 = (n-9)*(n+10)/2 = n*(n+1)/2 - 45. %F A051942 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n>=13. %F A051942 a(n) = n + a(n-1) (with a(9) = 0). - _Vincenzo Librandi_, Aug 06 2010 %F A051942 G.f.: x^10*(10 - 9*x)/(1-x)^3. %F A051942 From _Amiram Eldar_, Jan 10 2021: (Start) %F A051942 Sum_{n>=10} 1/a(n) = 2*A001008(19)/(19*A002805(19)) = 275295799/737176440. %F A051942 Sum_{n>=10} (-1)^n/a(n) = 4*log(2)/19 - 33464927/442305864. (End) %F A051942 E.g.f.: (1/8!)*(1814400 +1774080*x +846720*x^2 +262080*x^3 +58800*x^4 +10080*x^5 +1344*x^6 +136*x^7 +9*x^8 - (1814400 -40320*x -20160*x^2)*exp(x)). - _G. C. Greubel_, Jul 31 2022 %e A051942 a(10) = 10 + 0 = 10; %e A051942 a(11) = 11 + 10 = 21; %e A051942 a(12) = 12 + 21 = 33. %p A051942 A051942:=n->(n^2+n-90)/2: seq(A051942(n), n=9..80); # _Wesley Ivan Hurt_, Jan 28 2017 %t A051942 Table[n(n+1)/2 -45, {n, 9, 100}] (* _Vladimir Joseph Stephan Orlovsky_, Jun 15 2011 *) %t A051942 #-45&/@Drop[Accumulate[Range[60]],8] (* _Harvey P. Dale_, Jul 24 2011 *) %t A051942 LinearRecurrence[{3,-3,1},{0,10,21},60] (* _Harvey P. Dale_, Mar 25 2015 *) %o A051942 (PARI) a(n)=(n-9)*(n+10)/2; %o A051942 (Magma) [(n-9)*(n+10)/2: n in [9..80]]; // _G. C. Greubel_, Jul 31 2022 %o A051942 (SageMath) [(n-9)*(n+10)/2 for n in (9..80)] # _G. C. Greubel_, Jul 31 2022 %Y A051942 Cf. A000096, A001008, A001477, A002805, A056121, A056126, A079664. %K A051942 easy,nice,nonn %O A051942 9,2 %A A051942 Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 21 1999 %E A051942 More terms from _Zerinvary Lajos_, Oct 01 2006