This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052012 #29 Jun 10 2024 08:52:18 %S A052012 1,0,1,0,2,2,4,6,9,15,20,31,48,72,110,170,257,400,608,950,1448,2256, %T A052012 3487,5413,8440,13118,20478,31932,49995,78222,122553,192262,301826, %U A052012 474039,745772,1173270,1848000,2912623,4593723,7249438,11448047 %N A052012 Number of primes between successive Lucas numbers. %H A052012 Amiram Eldar, <a href="/A052012/b052012.txt">Table of n, a(n) for n = 1..100</a> %F A052012 a(n) = pi(L(n + 1) - 1) - pi(L(n)), where pi is the prime counting function (A000720) and L = A000032. - _Wesley Ivan Hurt_, Nov 09 2023 %F A052012 a(n) = A277062(n+1) - A277062(n) - [n+1 in A001606], where [] denotes the Iverson bracket. - _Amiram Eldar_, Jun 10 2024 %e A052012 Between L(7)=29 and L(8)=47 we find the following primes: 31, 37, 41 and 43 hence a(7)=4. %t A052012 PrimePi[Last[#]-1]-PrimePi[First[#]]&/@Partition[LucasL[ Range[45]],2,1] (* _Harvey P. Dale_, Jun 28 2011 *) %o A052012 (Haskell) %o A052012 a052012 n = a052012_list !! (n-1) %o A052012 a052012_list = c 1 0 $ tail a000204_list where %o A052012 c x y ls'@(l:ls) | x < l = c (x+1) (y + a010051 x) ls' %o A052012 | otherwise = y : c (x+1) 0 ls %o A052012 -- _Reinhard Zumkeller_, Dec 18 2011 %Y A052012 Cf. A000032, A000204, A000720, A001606, A005479, A052011, A277062. %K A052012 nonn,nice %O A052012 1,5 %A A052012 _Patrick De Geest_, Nov 15 1999