cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052015 Primes with distinct digits in ascending order.

This page as a plain text file.
%I A052015 #33 Jun 16 2025 12:47:59
%S A052015 2,3,5,7,13,17,19,23,29,37,47,59,67,79,89,127,137,139,149,157,167,179,
%T A052015 239,257,269,347,349,359,367,379,389,457,467,479,569,1237,1249,1259,
%U A052015 1279,1289,1367,1459,1489,1567,1579,1789,2347,2357,2389,2459,2467,2579
%N A052015 Primes with distinct digits in ascending order.
%H A052015 T. D. Noe, <a href="/A052015/b052015.txt">Table of n, a(n) for n = 1..100</a> (complete sequence)
%e A052015 Last term is a(100) = 23456789.
%p A052015 b:= proc(n) `if`(isprime(n), n, [][]), seq(
%p A052015       b(parse(cat(n, j))), j=irem(n, 10)+1..9)
%p A052015     end:
%p A052015 sort([seq(b(n), n=1..9)])[];  # _Alois P. Heinz_, Jun 16 2025
%t A052015 t={};Do[p=Prime[n];If[Select[Differences[IntegerDigits[p]],#<=0&]=={},AppendTo[t,p]],{n,380}];t (* _Jayanta Basu_, May 04 2013 *)
%t A052015 Select[Prime[Range[5000]],Min[Differences[IntegerDigits[#]]]>0&] (* _Harvey P. Dale_, Jun 20 2015 *)
%t A052015 Select[FromDigits@# &/@Subsets@Range@9,PrimeQ] (* _Hans Rudolf Widmer_, Apr 08 2023 *)
%o A052015 (PARI) A052015=vecextract( vecsort( vector( 511,i,isprime( t=eval( concat( vecextract(Vec("123456789"),i ))))*t),NULL,8),"^1") /* for old PARI versions replace,NULL,8),"^1" by ),"-100.." */ \\ _M. F. Hasler_, Jan 27 2009
%o A052015 (Python)
%o A052015 from sympy import isprime
%o A052015 from itertools import combinations
%o A052015 def agen(): # generator of terms
%o A052015     for d in range(1, 9):
%o A052015         for c in combinations("123456789", d):
%o A052015             if isprime(t:=int("".join(c))):
%o A052015                 yield t
%o A052015 print(list(agen())) # _Michael S. Branicky_, Dec 13 2023
%Y A052015 Cf. A028864, A028867, A052014.
%K A052015 nonn,base,fini,full,easy
%O A052015 1,1
%A A052015 _Patrick De Geest_, Nov 15 1999