cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052034 Primes such that the sum of the squares of their digits is also a prime.

This page as a plain text file.
%I A052034 #27 Nov 24 2021 03:06:59
%S A052034 11,23,41,61,83,101,113,131,137,173,179,191,197,199,223,229,311,313,
%T A052034 317,331,337,353,373,379,397,401,409,443,449,461,463,467,601,641,643,
%U A052034 647,661,683,719,733,739,773,797,829,863,883,911,919,937,971,977,991,997,1013
%N A052034 Primes such that the sum of the squares of their digits is also a prime.
%C A052034 Primes p such that the sum of the squared digits of p is a prime q. For the values of q see A109181.
%D A052034 Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., 2005, p. 89.
%D A052034 Charles W. Trigg, Journal of Recreational Mathematics, Vol. 20(2), 1988.
%H A052034 Zak Seidov, <a href="/A052034/b052034.txt">Table of n, a(n) for n = 1..10000</a>
%H A052034 Mike Mudge, <a href="https://archive.org/details/PersonalComputerWorldMagazine/PCW%20199705%20May%20Created%20From%20PCW%20Cover%20CD/page/n121/mode/1up?view=theater">Morph code</a>, Hands On Numbers Count, Personal Computer World, May 1997, p. 290.
%e A052034 p = 23 is in the sequence because q = 2^2 + 3^2 = 13 is a prime.
%e A052034 9431 -> 9^2 + 4^2 + 3^2 + 1^2 = 107 (which is prime).
%p A052034 a:=proc(n) local nn, L: nn:=convert(n,base,10): L:=nops(nn): if isprime(n)= true and isprime(add(nn[j]^2,j=1..L))=true then n else end if end proc: seq(a(n),n=1..1000); # _Emeric Deutsch_, Jan 08 2008
%t A052034 Select[Prime[Range[250]],PrimeQ[Total[IntegerDigits[#]^2]]&]  (* _Harvey P. Dale_, Dec 19 2010 *)
%o A052034 (Python)
%o A052034 from sympy import isprime, primerange
%o A052034 def ok(p): return isprime(sum(int(d)**2 for d in str(p)))
%o A052034 def aupto(limit): return [p for p in primerange(1, limit+1) if ok(p)]
%o A052034 print(aupto(1013)) # _Michael S. Branicky_, Nov 23 2021
%Y A052034 Cf. A003132, A052035, A091367, A108662, A109181.
%K A052034 nonn,base
%O A052034 1,1
%A A052034 _Patrick De Geest_, Dec 15 1999
%E A052034 Edited by _N. J. A. Sloane_, Dec 15 2007 and again on Dec 05 2008 at the suggestion of _Zak Seidov_