cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052035 Palindromic primes whose sum of squared digits is also prime.

This page as a plain text file.
%I A052035 #39 Nov 23 2021 15:58:54
%S A052035 11,101,131,191,313,353,373,797,919,10301,11311,12721,13331,13931,
%T A052035 14341,14741,16361,17971,18181,19391,30103,30703,33533,71317,71917,
%U A052035 74747,75557,76367,77977,79397,90709,93139,93739,95959,96769,97379
%N A052035 Palindromic primes whose sum of squared digits is also prime.
%C A052035 From _Bernard Schott_, Oct 20 2021: (Start)
%C A052035 Except for 11, all terms have an odd number of digits.
%C A052035 Except for terms of the form 10^k+1, k >= 2, the middle digit is always odd; the unique known term of the form 10^k+1 for 2 <= k <= 100000 is 101 (see comment in A000533). (End)
%D A052035 Charles W. Trigg, Journal of Recreational Mathematics, Vol. 20(2), 1988.
%H A052035 Michel Marcus, <a href="/A052035/b052035.txt">Table of n, a(n) for n = 1..1215</a>
%H A052035 Mike Mudge, <a href="https://archive.org/details/PersonalComputerWorldMagazine/PCW%20199705%20May%20Created%20From%20PCW%20Cover%20CD/page/n121/mode/1up?view=theater">Morph code</a>, Hands On Numbers Count, Personal Computer World, May 1997, p. 290.
%e A052035 373 -> 3^2 + 7^2 + 3^2 = 67, which is prime.
%t A052035 Select[Prime@ Range[2, 10^4], And[PalindromeQ@ #, PrimeQ@ Total[IntegerDigits[#]^2]] &] (* _Michael De Vlieger_, Oct 20 2021 *)
%o A052035 (PARI) isok(p) = my(d=digits(p)); isprime(p) && (d==Vecrev(d)) && isprime(sum(k=1, #d, d[k]^2)); \\ _Michel Marcus_, Oct 17 2021
%o A052035 (Python)
%o A052035 from sympy import isprime
%o A052035 def ok(n):
%o A052035     s = str(n)
%o A052035     return s==s[::-1] and isprime(n) and isprime(sum(int(d)**2 for d in s))
%o A052035 print([k for k in range(10**5) if ok(k)]) # _Michael S. Branicky_, Nov 23 2021
%o A052035 (Python) # second version for going to large terms
%o A052035 from sympy import isprime
%o A052035 from itertools import product
%o A052035 def ok(pal):
%o A052035     return isprime(pal) and isprime(sum(int(d)**2 for d in str(pal)))
%o A052035 def agentod(maxdigs):
%o A052035     yield 11
%o A052035     for d in range(3, maxdigs+1, 2):
%o A052035         pal = 10**(d-1) + 1
%o A052035         if ok(pal): yield pal
%o A052035         for first in "1379":
%o A052035             for left in product("0123456789", repeat=(d-3)//2):
%o A052035                 left = "".join(left)
%o A052035                 for mid in "13579":
%o A052035                     pal = int(first + left + mid + left[::-1] + first)
%o A052035                     if ok(pal): yield pal
%o A052035 print([an for an in agentod(5)]) # _Michael S. Branicky_, Nov 23 2021
%Y A052035 Cf. A000533, A002385, A052034, A003132.
%K A052035 nonn,base
%O A052035 1,1
%A A052035 _Patrick De Geest_, Dec 15 1999