This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052056 #18 May 31 2023 21:31:20 %S A052056 2,4,6,7,9,10,15,16,20,21,23,25,30,35,43,78,102,105,132,138,151,189, %T A052056 202,215,219,233,241,264,320,334,349,352,367,386,433,458,520,583,779, %U A052056 885,905,1068,1078,1131,1149,1198,1271,1276,1314,1503,1623,1646,1903,1962,2053 %N A052056 Numbers k such that k! starts with its largest prime substring. %H A052056 Michael S. Branicky, <a href="/A052056/a052056.py.txt">Python program</a> %e A052056 16 is a term because 16! = {209227}89888000 and its largest prime substring 209227 starts from the left. %o A052056 (Python) %o A052056 from sympy import isprime %o A052056 def starts_with_lps(n): # see link for faster version %o A052056 s = str(n) %o A052056 ss = (s[i:j] for i in range(len(s)) for j in range(i+1, len(s)+1)) %o A052056 lps = max((u for u in (int(t) for t in ss) if isprime(u)), default=0) %o A052056 return lps > 0 and s.startswith(str(lps)) %o A052056 def afind(): %o A052056 k, fk = 1, 1 %o A052056 while True: %o A052056 if starts_with_lps(fk): %o A052056 print(k, end=", ") %o A052056 k += 1 %o A052056 fk *= k %o A052056 afind() # _Michael S. Branicky_, Dec 31 2021 %Y A052056 Cf. A000142, A046277. %K A052056 nonn,base %O A052056 1,1 %A A052056 _Patrick De Geest_, Jan 15 2000 %E A052056 More terms from _Sean A. Irvine_, Feb 16 2011 %E A052056 Offset changed to 1 by _Jon E. Schoenfield_, Oct 17 2019 %E A052056 a(38)-a(49) from _Michael S. Branicky_, Dec 31 2021 %E A052056 a(50)-a(55) from _Michael S. Branicky_, May 31 2023