This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052092 #18 Dec 04 2015 04:12:40 %S A052092 1,3,5,9,11,15,19,23,25,31,35,41,45,49,55,59,63,69,75,81,87,93,99,105, %T A052092 109,113,119,125,129,133,139,145,151,157,161,167,173,179,185,191,195, %U A052092 201,207,213,219,225,231,237,243,249,255,261,267,273,279,285,291,297 %N A052092 Lengths of the palindromic primes from Honaker's sequence A053600. %C A052092 Since the terms from a(34) onward are currently only probable primes, the lengths given in this sequence beyond that point are only provisional. %C A052092 For n > 0, a(n) = a(n-1)+2*m where m is the number of digits of A052091(n). - _Chai Wah Wu_, Dec 03 2015 %H A052092 Chai Wah Wu, <a href="/A052092/b052092.txt">Table of n, a(n) for n = 0..501</a> %o A052092 (Python) %o A052092 from sympy import isprime %o A052092 A052092_list, l, p = [1], 1, 2 %o A052092 for _ in range(100): %o A052092 m, ps = 1, str(p) %o A052092 s = int('1'+ps+'1') %o A052092 while not isprime(s): %o A052092 m += 1 %o A052092 ms = str(m) %o A052092 if ms[0] in '268': %o A052092 ms = str(int(ms[0])+1) + '0'*(len(ms)-1) %o A052092 m = int(ms) %o A052092 if ms[0] in '45': %o A052092 ms = '7' + '0'*(len(ms)-1) %o A052092 m = int(ms) %o A052092 s = int(ms+ps+ms[::-1]) %o A052092 p = s %o A052092 l += 2*len(ms) %o A052092 A052092_list.append(l) # _Chai Wah Wu_, Dec 02 2015 %Y A052092 Cf. A052091, A053600, A047076. %K A052092 nonn,base %O A052092 0,2 %A A052092 _Patrick De Geest_, Jan 15 2000 %E A052092 Comments from _G. L. Honaker, Jr._, Mar 30 2000 %E A052092 Edited by _T. D. Noe_, Oct 30 2008