cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052100 a(n) = lcm(n, phi(n), n - phi(n)).

Original entry on oeis.org

0, 2, 6, 4, 20, 12, 42, 8, 18, 60, 110, 24, 156, 168, 840, 16, 272, 36, 342, 120, 252, 660, 506, 48, 100, 1092, 54, 336, 812, 1320, 930, 32, 8580, 2448, 9240, 72, 1332, 3420, 1560, 240, 1640, 420, 1806, 1320, 2520, 6072, 2162, 96, 294, 300, 31008, 2184, 2756
Offset: 1

Views

Author

Labos Elemer, Jan 20 2000

Keywords

Comments

If n is a power of a prime p, then a(n) = n*(p-1). - Robert Israel, May 20 2015

Examples

			For n=72, phi(72)=24, cototient(72)=48, a(72) = lcm(72,24,48) = 144.
For n=255, phi(255)=128, cototient(255)=127, a(255) = lcm(255,128,127) = 4145280.
		

Crossrefs

Programs

  • Maple
    seq(ilcm(n, numtheory:-phi(n),n - numtheory:-phi(n)), n=1..100); # Robert Israel, May 20 2015
  • Mathematica
    Table[LCM[n, EulerPhi[n], n - EulerPhi[n]], {n, 53}] (* Ivan Neretin, May 20 2015 *)

Formula

a(n) = lcm(n, A000010(n), A051953(n)).
For n=p prime, phi(p)=p-1, cototient(p)=p-1, a(p)=p(p-1)=A009262(p).
a(n) = n*A000010(n)*A051953(n)/A009195(n)^2. - Robert Israel, May 20 2015