cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052119 Decimal expansion of number with continued fraction expansion 0, 1, 2, 3, 4, 5, 6, ...

This page as a plain text file.
%I A052119 #48 Feb 16 2025 08:32:41
%S A052119 6,9,7,7,7,4,6,5,7,9,6,4,0,0,7,9,8,2,0,0,6,7,9,0,5,9,2,5,5,1,7,5,2,5,
%T A052119 9,9,4,8,6,6,5,8,2,6,2,9,9,8,0,2,1,2,3,2,3,6,8,6,3,0,0,8,2,8,1,6,5,3,
%U A052119 0,8,5,2,7,6,4,6,4,1,1,1,2,9,9,6,9,6,5,6,5,4,1,8,2,6,7,6,5,6,8,7,2,3,9,8,2
%N A052119 Decimal expansion of number with continued fraction expansion 0, 1, 2, 3, 4, 5, 6, ...
%D A052119 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.2, p. 423.
%H A052119 G. C. Greubel, <a href="/A052119/b052119.txt">Table of n, a(n) for n = 0..5000</a>
%H A052119 F. Amoretti, <a href="http://www.numdam.org/item/?id=NAM_1855_1_14__40_1">Sur la fraction continue [0,1,2,3,4,...]</a>, Nouvelles annales de mathématiques, 1ère série, tome 14 (1855), pp. 40-44.
%H A052119 Simon Plouffe, <a href="http://www.plouffe.fr/simon/constants/niceconst.txt">10000 digits</a>.
%H A052119 Simon Plouffe, <a href="http://www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap69.html">Bessell(1,2)/Bessell(0,2)</a>.
%H A052119 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ContinuedFractionConstants.html">Continued Fraction Constants</a>.
%H A052119 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GeneralizedContinuedFraction.html">Generalized Continued Fraction</a>.
%H A052119 <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>.
%F A052119 BesselI(1, 2)/BesselI(0, 2) = A096789/A070910. - _Henry Bottomley_, Jul 13 2001
%F A052119 Equivalently, the value of this continued fraction is the ratio of the sums: sum_{n=0..inf} n/(n!n!) and sum_{n=0..inf} 1/(n!n!). - _Robert G. Wilson v_, Jul 09 2004
%e A052119 0.697774657964007982006790592551752599486658...
%p A052119 evalf(BesselI(1, 2)/BesselI(0, 2), 120);  # _Alois P. Heinz_, Jan 25 2022
%t A052119 RealDigits[ FromContinuedFraction[ Range[0, 44]], 10, 110][[1]]
%t A052119 (* Or *) RealDigits[ BesselI[1, 2] / BesselI[0, 2], 10, 110] [[1]]
%t A052119 (* Or *) RealDigits[ Sum[n/(n!n!), {n, 0, Infinity}] / Sum[1/(n!n!), {n, 0, Infinity}], 10, 110] [[1]] (* _Robert G. Wilson v_, Jul 09 2004 *)
%o A052119 (PARI) besseli(1,2)/besseli(0,2) \\ _Charles R Greathouse IV_, Feb 19 2014
%Y A052119 Equals 1/A060997.
%K A052119 cons,easy,nonn,nice
%O A052119 0,1
%A A052119 Robert Lozyniak (11(AT)onna.com), Jan 21 2000
%E A052119 More terms from _Vladeta Jovovic_, Mar 30 2000
%E A052119 Entry revised by _N. J. A. Sloane_, Aug 13 2006