This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052127 #30 Apr 21 2023 02:49:04 %S A052127 1,1,8,96,2112,68160,3087360,185633280,14301020160,1372232171520, %T A052127 160390869811200,22426206024499200,3695148753459609600, %U A052127 708443854690399027200,156340439420689081958400,39342248735234589720576000,11197266840049016358567936000 %N A052127 Sum_{n >= 0} a(n) * x^n / n!^2 = exp(-2*x)/(1-x)^3. %C A052127 As described in the Stanley reference, this sequence gives the expectation of the fourth moment of a random sign matrix (a matrix whose entries are independently set equal to -1 or 1 with equal probability) of size n. For large n, a(n) is asymptotic to (n!)^2*(n^2+7n+10)/(2e^2). - Kevin P. Costello (kcostell(AT)gmail.com), Oct 22 2007 %D A052127 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.64(b). %D A052127 G. Szekeres, The average value of skew Hadamard matrices, Proceedings of the First Australian Conference on Combinatorial Mathematics (Univ. Newcastle, Newcastle, 1972), pp. 55--59. Univ. of Newcastle Res. Associates, Newcastle, 1972. MR0349708 (50 #2201). This is S_4(n). %H A052127 Zelin Lv and Aaron Potechin, <a href="https://arxiv.org/abs/2206.11356">The Sixth Moment of Random Determinants</a>, arXiv:2206.11356 [math.CO], 2022. See Table 1 p. 3. %H A052127 H. Nyquist, S. O. Rice, and J. Riordan, <a href="https://www.jstor.org/stable/43634123">The distribution of random determinants</a>, Quarterly of Applied Mathematics, 12(2):97-104, 1954. %F A052127 a(n) = (n!)^2*A209429(n)/A209430(n). [Szekeres] %F A052127 a(n) = n! * A052124(n). - _Sean A. Irvine_, Oct 25 2021 %o A052127 (PARI) my(x='x+O('x^30), v = Vec(serlaplace( exp(-2*x)/(1-x)^3))); vector(#v, k, v[k]*(k-1)!) \\ _Michel Marcus_, Oct 25 2021 %o A052127 (Python) %o A052127 from math import factorial %o A052127 from fractions import Fraction %o A052127 def A052127(n): return int((n+5)*(n+2)*factorial(n)**2*sum(Fraction((-1 if k&1 else 1)*(k+3)<<k+2,factorial(k+5)) for k in range(n+1))) # _Chai Wah Wu_, Apr 20 2023 %Y A052127 Cf. A052124, A209429, A209430. %K A052127 nonn %O A052127 0,3 %A A052127 _N. J. A. Sloane_, Jan 23 2000