This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052141 #43 Mar 10 2024 16:07:52 %S A052141 1,3,26,252,2568,26928,287648,3112896,34013312,374416128,4145895936, %T A052141 46127840256,515268544512,5775088103424,64912164888576, %U A052141 731420783788032,8259345993203712,93443504499523584,1058972245409005568,12019152955622817792,136599995048232747008 %N A052141 Number of paths from (0,0) to (n,n) that always move closer to (n,n) (and do not pass (n,n) and backtrack). %C A052141 From _Michel Marcus_ and _Petros Hadjicostas_, Jul 16 2020: (Start) %C A052141 a(n) is the number of subdivisions of a 2 x n grid as defined in Robeva and Sun (2020). We have a(n) = A059576(n-1, n-1) for n >= 1 privided the latter is viewed as a square array (rather than a triangle). %C A052141 In general, A059576(m-1, n-1) is the number of subdivisions of a 2-row grid with m points at the top row and n points at the bottom. (End) %C A052141 The title condition is unclear: the path (0,0) -> (0,n) -> (n,n-1) -> (n,n) arguably meets the title condition but is not allowed, because steps with negative slope are proscribed. Steps must move east (slope 0) or have finite positive slope or move north (infinite slope). On the other hand, for lattice paths subject only to the condition that each successive point on the path is closer to the terminal point than its predecessor, see the question "Why are the numbers counting "ever-closer" lattice paths so round?" on the mathoverflow website. - _David Callan_, Nov 21 2021 %D A052141 R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 6.3.9. %H A052141 Vincenzo Librandi, <a href="/A052141/b052141.txt">Table of n, a(n) for n = 0..200</a> %H A052141 Elina Robeva and Melinda Sun, <a href="https://arxiv.org/abs/2007.00877">Bimonotone Subdivisions of Point Configurations in the Plane</a>, arXiv:2007.00877 [math.CO], 2020. See A(2,n) column in Table 3 (p. 10). %F A052141 G.f.: (1/2)*( 1 + 1/sqrt(1 - 12*x + 4*x^2) ). %F A052141 a(n) = 2^(n-1) * A001850(n). - Jon Stadler (jstadler(AT)capital.edu), Apr 30 2003 %F A052141 D-finite with recurrence: n*a(n) = 6*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 08 2012 %F A052141 a(n) ~ sqrt(8+6*sqrt(2))*(6+4*sqrt(2))^n/(8*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 08 2012 %t A052141 a[0]=1; a[n_]:= Hypergeometric2F1[-n, n+1, 1, -1]*2^(n-1); Table[a[n], {n, 0, 19}] (* _Jean-François Alcover_, Feb 23 2012, after Jon Stadler *) %t A052141 Table[2^(n-1)*LegendreP[n,3] +Boole[n==0]/2, {n,0,40}] (* _G. C. Greubel_, May 21 2023 *) %t A052141 CoefficientList[Series[(1+1/Sqrt[1-12x+4x^2])/2,{x,0,30}],x] (* _Harvey P. Dale_, Mar 10 2024 *) %o A052141 (Magma) [n eq 0 select 1 else 2^(n-1)*Evaluate(LegendrePolynomial(n), 3) : n in [0..40]]; // _G. C. Greubel_, May 21 2023 %o A052141 (SageMath) %o A052141 def A052141(n): return 2^(n-1)*gen_legendre_P(n,0,3) + int(n==0)/2 %o A052141 [A052141(n) for n in range(41)] # _G. C. Greubel_, May 21 2023 %Y A052141 Main diagonal of A059576. %Y A052141 Column k=2 of A316674. %Y A052141 Cf. A084773, A316673. %K A052141 nonn,easy,nice,walk %O A052141 0,2 %A A052141 _N. J. A. Sloane_, Jan 23 2000