This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052150 #22 Mar 22 2020 03:59:27 %S A052150 1,6,24,82,261,804,2440,7356,22113,66394,199248,597822,1793557, %T A052150 5380776,16142448,48427480,145282593,435847950,1307544040,3922632330, %U A052150 11767897221,35303691916,105911076024,317733228372,953199685441 %N A052150 Partial sums of A000340, second partial sums of A003462. %D A052150 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196. %D A052150 P. Ribenhoim, The Little Book of Big Primes, Springer-Verlag, N.Y., 1991, p. 53. %H A052150 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-12,10,-3). %F A052150 a(n) = ((3^(n+3)) - (2*(n^2) + 12n + 19))/8. %F A052150 a(n) = 3a(n-1)+C(n+2,2); a(0)=1. %F A052150 a(n) = sum{k=0..n, binomial(n+3, k+3)2^k}. - _Paul Barry_, Aug 20 2004 %F A052150 From _Colin Barker_, Dec 18 2012: (Start) %F A052150 a(n) = 6*a(n-1) - 12*a(n-2) + 10*a(n-3) - 3*a(n-4). %F A052150 G.f.: 1/((x-1)^3*(3*x-1)). (End) %t A052150 LinearRecurrence[{6,-12,10,-3},{1,6,24,82},40] (* _Harvey P. Dale_, Sep 05 2013 *) %Y A052150 Cf. A003462, A000340. %K A052150 easy,nonn %O A052150 0,2 %A A052150 _Barry E. Williams_, Jan 23 2000