A052173 Another version of the Catalan triangle A008315.
1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 3, 0, 2, 1, 0, 4, 0, 5, 0, 1, 0, 5, 0, 9, 0, 5, 1, 0, 6, 0, 14, 0, 14, 0, 1, 0, 7, 0, 20, 0, 28, 0, 14, 1, 0, 8, 0, 27, 0, 48, 0, 42, 0, 1, 0, 9, 0, 35, 0, 75, 0, 90, 0, 42, 1, 0, 10, 0, 44, 0, 110, 0, 165, 0, 132, 0, 1, 0, 11, 0, 54, 0, 154, 0, 275, 0, 297, 0
Offset: 0
Examples
1; 1 0; 1 0 1; 1 0 2 0; 1 0 3 0 2; 1 0 4 0 5 0; 1 0 5 0 9 0 5; ...
Links
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6
- W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
Crossrefs
Formula
a(n, k) = a(n-1, k-2)+a(n-1, k) with a(0, 0)=1 and a(n, k)=0 if k < 0 or k > n.
Extensions
More terms from Henry Bottomley, Aug 23 2001