cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052174 Triangle of numbers arising in enumeration of walks on square lattice.

This page as a plain text file.
%I A052174 #25 Jul 06 2024 21:19:20
%S A052174 1,1,1,3,2,1,6,8,3,1,20,20,15,4,1,50,75,45,24,5,1,175,210,189,84,35,6,
%T A052174 1,490,784,588,392,140,48,7,1,1764,2352,2352,1344,720,216,63,8,1,5292,
%U A052174 8820,7560,5760,2700,1215,315,80,9,1
%N A052174 Triangle of numbers arising in enumeration of walks on square lattice.
%H A052174 R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, sandsteps and Pascal pyramids</a>, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
%F A052174 T(n, y) equals C(n+1,k)*C(n,k) - C(n+1,k)*C(n,k-1) if n-y = 2k, else if n-y = 2k+1 equals C(n+1,k)*C(n,k+1) - C(n+1,k+1)*C(n,k-1) (using article notation). - _Michel Marcus_, Oct 12 2014
%e A052174 First few rows:
%e A052174     1;
%e A052174     1   1;
%e A052174     3   2   1;
%e A052174     6   8   3  1;
%e A052174    20  20  15  4  1;
%e A052174    50  75  45 24  5 1;
%e A052174   175 210 189 84 35 6 1;
%e A052174   ...
%t A052174 c = Binomial; T[n_, m_] /; EvenQ[n-m] := (k = (n-m)/2; c[n+1, k]*c[n, k] - c[n+1, k]*c[n, k-1]); T[n_, m_] /; OddQ[n-m] := (k = (n-m-1)/2; c[n+1, k]*c[n, k+1] - c[n+1, k+1]*c[n, k-1]); Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 13 2015, after _Michel Marcus_ *)
%o A052174 (PARI) tabl(nn) = {alias(C, binomial); for (n=0, nn, for (k=0, n, if (!((n-k) % 2), kk = (n-k)/2; tnk = C(n+1,kk)*C(n,kk) - C(n+1,kk)*C(n,kk-1), kk = (n-k-1)/2; tnk = C(n+1,kk)*C(n,kk+1) - C(n+1,kk+1)*C(n,kk-1)); print1(tnk, ", ");); print(););} \\ _Michel Marcus_, Oct 12 2014
%Y A052174 Cf. A005558 (first column), A005559, A005560, A005561, A005562.
%K A052174 nonn,tabl,easy,nice
%O A052174 0,4
%A A052174 _N. J. A. Sloane_, Jan 26 2000