cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052177 Number of walks on simple cubic lattice (starting on the xy plane, never going below it and finishing a height 1 above it).

This page as a plain text file.
%I A052177 #32 Apr 18 2018 19:53:34
%S A052177 0,1,8,50,288,1605,8824,48286,264128,1447338,7953040,43842788,
%T A052177 242507456,1345868589,7493458392,41850173670,234408444288,
%U A052177 1316541032958,7413214297968,41842633282620,236703844320960
%N A052177 Number of walks on simple cubic lattice (starting on the xy plane, never going below it and finishing a height 1 above it).
%H A052177 Vincenzo Librandi, <a href="/A052177/b052177.txt">Table of n, a(n) for n = 0..200</a>
%H A052177 Rigoberto Flórez, Leandro Junes, José L. Ramírez, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Florez/florez4.html">Further Results on Paths in an n-Dimensional Cubic Lattice</a>, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.2.
%H A052177 R. K. Guy, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/GUY/catwalks.html">Catwalks, sandsteps and Pascal pyramids</a>, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
%F A052177 a(n) = 4*a(n-1)+A005572(n-1)+A052178(n-1) = A052179(n, 1) = Sum_{j=0..ceiling((n-1)/2)} 4^(n-2j-1)*binomial(n, 2j+1)*binomial(2j+2, j+1)/(j+2).
%F A052177 Recurrence: (n-1)*(n+3)*a(n) = 4*n*(2*n+1)*a(n-1) - 12*(n-1)*n*a(n-2). - _Vaclav Kotesovec_, Oct 08 2012
%F A052177 a(n) ~ 6^(n+3/2)/(sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 08 2012
%F A052177 G.f.: (1 - 4*x - sqrt(1-8*x+12*x^2))^2/(4*x^3). - _Mark van Hoeij_, May 16 2013
%t A052177 Flatten[{0,RecurrenceTable[{(n-1)*(n+3)*a[n] == 4*n*(2*n+1)*a[n-1] - 12*(n-1)*n*a[n-2],a[1]==1,a[2]==8},a,{n,20}]}] (* _Vaclav Kotesovec_, Oct 08 2012 *)
%K A052177 nonn,walk
%O A052177 0,3
%A A052177 _N. J. A. Sloane_, Jan 26 2000
%E A052177 More terms and formula from _Henry Bottomley_, Aug 23 2001