cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A083269 a(n) = pi(A052180(n)) = A000720(A052180(n)); subscript of last prime used in Eratosthenes sieve by which all composites between n-th and (n+1)th primes were excluded.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 3, 1, 3, 2, 1, 2, 4, 3, 1, 3, 2, 1, 4, 2, 3, 4, 2, 1, 2, 1, 2, 5, 2, 4, 1, 5, 1, 3, 4, 2, 6, 3, 1, 5, 1, 2, 1, 5, 6, 2, 1, 2, 3, 1, 6, 5, 4, 3, 1, 3, 2, 1, 7, 6, 2, 1, 2, 7, 3, 5, 1, 2, 3, 8, 4, 6, 2, 3, 7, 2, 6, 4, 1, 4, 1, 8, 2, 3, 5, 2, 1, 2, 5, 6, 2, 7, 2, 3, 5, 1, 9, 3, 8, 6, 3, 1, 3
Offset: 1

Views

Author

Labos Elemer, May 14 2003

Keywords

Examples

			Of composites between the 24th and 25th primes (89, 97), the least prime divisors are {2,7,2,3,2,5,2}.
The largest of these is 7. This means that pi(7)=4 steps in prime sieving are required to sweep out all composites between 89 and 97: {90,92,94,96}, {93}, {95}, and {91} were excluded in the 1st, 2nd, 3rd, and 4th steps, respectively.
So a(24)=4.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] mi[x_] := Min[ba[x]] Table[PrimePi[Max[Table[mi[ba[w]], {w, Prime[j]+1, -1+Prime[j+1]}]]], {j, 1, 30}]

A052230 Primes p from A031924 such that A052180(primepi(p)) = 5.

Original entry on oeis.org

23, 31, 53, 61, 83, 151, 173, 233, 263, 271, 331, 353, 383, 443, 503, 541, 563, 571, 593, 601, 653, 751, 991, 1013, 1103, 1223, 1231, 1283, 1291, 1321, 1433, 1493, 1553, 1613, 1621, 1741, 1861, 1973, 2011, 2063, 2131, 2281, 2333, 2341, 2371, 2393, 2543
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

Programs

  • Maple
    filter:= proc(p) local t,m,flag;
      flag:= false;
      for t from p+1 to p+5 do
        m:= min(numtheory:-factorset(t));
        if m > 5 then return false
        elif m = 5 then flag:= true
        fi
      od;
      flag
    end proc:
    Res:= NULL: count:= 0:
    q:= 1: p:= 2:
    while count < 100 do
      q:= p;
      p:= nextprime(p);
      if p-q = 6 and filter(q) then
        count:= count+1; Res:= Res, q;
      fi
    od:
    Res; # Robert Israel, Aug 12 2018

A052229 a(n) is the first prime p from A031924 such that A052180(primepi(p)) = prime(n).

Original entry on oeis.org

23, 47, 251, 167, 727, 433, 941, 1187, 1453, 1367, 2417, 4597, 2207, 3761, 4657, 4451, 5557, 6317, 7517, 8923, 9043, 17707, 15227, 12823, 10607, 33487, 28663, 29717, 50417, 31567, 24793, 24043, 28753, 28837, 29983, 29173, 59951, 45497
Offset: 3

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052231 Primes p from A031924 such that A052180(primepi(p)) = 7.

Original entry on oeis.org

47, 73, 131, 157, 257, 367, 677, 971, 1097, 1123, 1181, 1543, 1601, 1753, 2383, 2441, 2467, 2677, 3307, 3407, 3617, 3727, 3911, 4357, 4457, 4903, 4987, 5113, 5297, 5381, 5407, 5743, 5801, 6037, 6373, 6977, 7187, 7213, 7481, 7717, 7817, 7901, 7927, 8053
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052232 Primes p from A031924 such that A052180(primepi(p)) = 11.

Original entry on oeis.org

251, 647, 733, 977, 1063, 1657, 1901, 1987, 2713, 2957, 3637, 4211, 4871, 4937, 5683, 5861, 6257, 6673, 7247, 7577, 8831, 9491, 9643, 11801, 11953, 12197, 12613, 13121, 13451, 14923, 15101, 15187, 15761, 15913, 16421, 16487, 18223, 18797
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052233 Primes p from A031924 such that A052180(primepi(p)) = 13.

Original entry on oeis.org

167, 373, 557, 607, 947, 1777, 2351, 2897, 4507, 5081, 5443, 5471, 6067, 7237, 8747, 9343, 9967, 10903, 11087, 12491, 12697, 13037, 14051, 15767, 15817, 16001, 16363, 16547, 16937, 16987, 17327, 19483, 21277, 24971, 26687, 26921, 30197, 30637
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052234 Primes p from A031924 such that A052180(primepi(p)) = 17.

Original entry on oeis.org

727, 1033, 1747, 2837, 4093, 5387, 5897, 6337, 7121, 7867, 8887, 9467, 10723, 11437, 13751, 15077, 15313, 15791, 16097, 16333, 17047, 17117, 17321, 19597, 20177, 21401, 22147, 23167, 28541, 28573, 30307, 31327, 33641, 41017, 41597
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052235 Primes p from A031924 such that A052180(primepi(p)) = 19.

Original entry on oeis.org

433, 587, 1117, 2411, 4007, 4993, 5107, 5147, 5563, 6703, 6857, 6971, 7541, 10847, 12973, 14951, 18787, 21221, 24373, 24527, 27947, 29201, 30341, 30643, 30757, 36913, 37483, 38321, 39877, 40487, 42767, 43451, 45007, 46301, 47287, 48883, 49037
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 23, p < 50000, p = q, q = NextPrime[p]; If[q == p + 6 && Max[ FactorInteger[#][[1, 1]]& /@ Range[p+1, q-1]] == 19, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Jan 29 2018 *)

A052236 Primes p from A031924 such that A052180(primepi(p)) = 29.

Original entry on oeis.org

1187, 1361, 2287, 3797, 4723, 5711, 7451, 10061, 10987, 12497, 17021, 18587, 20327, 22067, 25603, 26417, 32563, 41263, 41381, 43991, 50833, 53617, 55997, 60521, 64871, 71713, 77977, 81457, 84011, 87317, 87547, 89983, 90971, 98801
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

A052237 Primes p from A031924 such that A052180(primepi(p)) = 31.

Original entry on oeis.org

1453, 3313, 5981, 6911, 8707, 15467, 22721, 25447, 25633, 26627, 29167, 30097, 31957, 42187, 42373, 42437, 46093, 48017, 48947, 49627, 51673, 52667, 58061, 59113, 62897, 68477, 74923, 78643, 78707, 105613, 106357, 107351, 108217
Offset: 1

Views

Author

Labos Elemer, Feb 01 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_] := Max[FactorInteger[#][[1, 1]] & /@ Range[ p+1, NextPrime[p] - 1]]; Select[Prime@ Range@ 10300, NextPrime[#] == # + 6 && f[#] == 31 &] (* Giovanni Resta, May 30 2018 *)
Showing 1-10 of 23 results. Next