This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052239 #41 Dec 03 2023 01:24:42 %S A052239 251,111497,74453,1397609,642427,5321191,23921257,55410683,400948369, %T A052239 253444777,1140813701,491525857,998051413,2060959049,4480114337, %U A052239 55140921491,38415872947,315392068463,15162919459,60600021611,278300877401,477836574947,1486135570643 %N A052239 Smallest prime p in set of 4 consecutive primes in arithmetic progression with common difference 6n. %C A052239 See also the less restrictive A054701 where the gaps are multiples 6n. - _M. F. Hasler_, Nov 06 2018 %H A052239 Jerry M Lagrou, <a href="/A052239/b052239.txt">Table of n, a(n) for n = 1..42</a> %H A052239 <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a> %e A052239 a(5) = 642427, 642457, 642487, 642517 are the smallest consecutive primes with 3 consecutive gaps of 30, cf. A052243. %e A052239 From _M. F. Hasler_, Nov 06 2018: (Start) %e A052239 Other terms are also initial terms of corresponding sequences: %e A052239 a(1) = 251 = A033451(1) = A054800(1), start of first CPAP-4 with common gap of 6, %e A052239 a(2) = 111497 = A033447(1), start of first CPAP-4 with common gap of 12, %e A052239 a(3) = 74453 = A033448(1) = A054800(25), first CPAP-4 with common gap of 18, %e A052239 a(4) = 1397609 = A052242(1), start of first CPAP-4 with common gap of 24, %e A052239 a(5) = 642427 = A052243(1) = A052195(16), first CPAP-4 with common gap of 30, %e A052239 a(6) = 5321191 = A058252(1) = A161534(26), first CPAP-4 with common gap 36 = 6^2, %e A052239 a(7) = 23921257 = A058323(1), start of first CPAP-4 with common gap of 42, %e A052239 a(8) = 55410683 = A067388(1), start of first CPAP-4 with common gap of 48, %e A052239 a(9) = 400948369 = A259224(1), start of first CPAP-4 with common gap of 54, %e A052239 a(10) = 253444777 = A210683(1) = A089234(417), CPAP-4 with common gap of 60, %e A052239 a(11) = 1140813701 = A287547(1), start of first CPAP-4 with common gap of 66, %e A052239 a(12) = 491525857 = A287550(1), start of first CPAP-4 with common gap of 72, %e A052239 a(13) = 998051413 = A287171(1), start of first CPAP-4 with common gap of 78, %e A052239 a(14) = 2060959049 = A287593(1), start of first CPAP-4 with common gap of 84, %e A052239 a(15) = 4480114337 = A286817(1) = A204852(444), common distance 90. (End) %t A052239 Transpose[Flatten[Table[Select[Partition[Prime[Range[2000000]],4,1], Union[ Differences[ #]] =={6n}&,1],{n,7}],1]][[1]] (* _Harvey P. Dale_, Aug 12 2012 *) %o A052239 (PARI) a(n, p=[2, 0, 0], d=6*[n, n, n])={while(p+d!=p=[nextprime(p[1]+1), p[1], p[2]], ); p[3]-d[3]} \\ after _M. F. Hasler_ in A052243; Graziano Aglietti (mg5055(AT)mclink.it), Aug 22 2010, Corrected by _M. F. Hasler_, Nov 06 2018 %o A052239 (PARI) A052239(n, p=2, c, o)={n*=6; forprime(q=p+1, , if(p+n!=p=q, next, q!=o+2*n, c=2, c++>3, break); o=q-n); o-n} \\ _M. F. Hasler_, Nov 06 2018 %Y A052239 Initial terms of sequences A033451, A033447, A033448, A052242, A052243, A058252, A058323, A067388, A259224, A210683. %Y A052239 Range is a subset of A054800: start of 4 consecutive primes in arithmetic progression (CPAP-4). %Y A052239 Cf. A054701: gaps are possibly distinct multiples of 6n (not CPAP's). %K A052239 nice,nonn %O A052239 1,1 %A A052239 _Labos Elemer_, Jan 31 2000 %E A052239 More terms from _Labos Elemer_, Jan 04 2002 %E A052239 a(7) corrected and more terms added by Graziano Aglietti (mg5055(AT)mclink.it), Aug 22 2010 %E A052239 a(15)-a(20) from _Donovan Johnson_, Oct 05 2010 %E A052239 a(21)-a(23) from _Donovan Johnson_, May 23 2011