This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052265 #18 Apr 13 2024 09:08:33 %S A052265 1,1,1,2,1,1,3,4,3,1,1,4,9,16,20,16,9,4,1,1,5,17,52,136,284,477,655, %T A052265 730,655,477,284,136,52,17,5,1,1,6,28,134,625,2674,10195,34230,100577, %U A052265 258092,579208,1140090,1974438,3016994,4077077,4881092,5182326,4881092 %N A052265 Triangle giving T(n,r) = number of equivalence classes of Boolean functions of n variables and range r=0..2^n under action of symmetric group. %C A052265 Also, T(n,k) is the number of unlabeled n-vertex hypergraphs (or set systems) with k hyperedges. - _Pontus von Brömssen_, Apr 10 2024 %D A052265 M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 147. %H A052265 Andrew Howroyd, <a href="/A052265/b052265.txt">Table of n, a(n) for n = 0..2057</a> %H A052265 <a href="/index/Bo#Boolean">Index entries for sequences related to Boolean functions</a> %F A052265 T(n,k) = A371830(n,k-1) + A371830(n,k) (with A371830(n,k) = 0 if k < 0 or k >= 2^n). - _Pontus von Brömssen_, Apr 10 2024 %e A052265 Triangle begins: %e A052265 1, 1; %e A052265 1, 2, 1; %e A052265 1, 3, 4, 3, 1; %e A052265 1, 4, 9, 16, 20, 16, 9, 4, 1; %e A052265 1, 5, 17, 52, 136, 284, 477, 655, 730, 655, 477, 284, 136, 52, 17, 5, 1; %e A052265 ... %t A052265 Table[rl = Table[Tuples[{0, 1}, nn][[i]] -> i, {i, 1, 2^nn}]; %t A052265 f[permutation_] := PermutationCycles[Map[Permute[#, permutation] &, Tuples[{0, 1}, nn]] /. rl];CoefficientList[(Map[CycleIndexPolynomial[#, Array[Subscript[x, ##] &, 2^nn],2^nn] &, Map[f, Permutations[Range[nn]]]] // Total)/nn! /. %t A052265 Table[Subscript[x, i] -> 1 + x^i, {i, 1, nn!}], x], {nn, 0, 8}] (* _Geoffrey Critzer_, Jun 22 2021 *) %o A052265 (PARI) %o A052265 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A052265 Fix(q,x)={my(v=divisors(lcm(Vec(q))), u=apply(t->2^sum(j=1, #q, gcd(t, q[j])), v)); prod(i=1, #v, my(t=v[i]); (1+x^t)^(sum(j=1, i, my(d=t/v[j]); if(!frac(d), moebius(d)*u[j]))/t))} %o A052265 Row(n)={my(s=0); forpart(q=n, s+=permcount(q)*Fix(q,x)); Vecrev(s/n!)} %o A052265 { for(n=0, 4, print(Row(n))) } \\ _Andrew Howroyd_, Mar 26 2020 %Y A052265 Row sums give A003180. %Y A052265 Cf. A028657, A371830 (empty hyperedge not permitted). %K A052265 nonn,tabf,nice %O A052265 0,4 %A A052265 _Vladeta Jovovic_, Feb 04 2000