cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052273 Number of distinct 4th powers mod n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 4, 2, 4, 4, 6, 4, 4, 8, 4, 2, 5, 8, 10, 4, 8, 12, 12, 4, 6, 8, 10, 8, 8, 8, 16, 4, 12, 10, 8, 8, 10, 20, 8, 4, 11, 16, 22, 12, 8, 24, 24, 4, 22, 12, 10, 8, 14, 20, 12, 8, 20, 16, 30, 8, 16, 32, 16, 6, 8, 24, 34, 10, 24, 16, 36, 8, 19, 20, 12, 20
Offset: 1

Views

Author

N. J. A. Sloane, Feb 05 2000

Keywords

Comments

This sequence is multiplicative [Li]. - Leon P Smith, Apr 16 2005

Crossrefs

Cf. A000224 (squares), A046530 (cubic residues), A052274 (5th powers), A052275 (6th powers), A085310 (7th powers), A085311 (8th powers), A085312 (9th powers), A085313 (10th powers), A085314 (11th powers), A228849 (12th powers).

Programs

  • Maple
    A052273 := proc(n,k) local i; nops({seq(i^k mod n,i=0..n-1)}); end; # number of k-th powers mod n
  • Mathematica
    a[n_] := Table[PowerMod[i, 4, n], {i, 0, n-1}] // Union // Length;
    Array[a, 100] (* Jean-François Alcover, Mar 24 2020 *)
  • PARI
    a(n)=my(f=factor(n)); prod(i=1,#f[,1],my(k=f[i,1]^f[i,2]); #vecsort(vector(k,i,i^4%k),,8)) \\ Charles R Greathouse IV, May 26 2013
    
  • PARI
    \\ general formula for k-th powers, see Seraj link
    h(p,e,k=4)=my(a=(p-1)/gcd(k,p-1),b=if(k%2+p%2,0,valuation(k,p)+1)+p%2*valuation(k,p),g=(e-1)%k+1,G=p^g,B=p^(b+1),K=p^k,E=p^e); a*(K/B*(E-G)/(K-1)+ceil(G/B))+1
    a(n,f=factor(n),k=4)=prod(i=1,#f~, h(f[i,1],f[i,2],k)) \\ Charles R Greathouse IV, Nov 09 2022
    
  • Python
    from math import prod
    from sympy import factorint
    def A052273(n): return prod(1+(p**e//15+bool(e&3) if p==2 else (p-1)*p**(e+3)//((4 if p&3==1 else 2)*(p**4-1))) for p, e in factorint(n).items()) # Chai Wah Wu, Apr 09 2025

Formula

Conjecture: a(2^e) = 1 + floor(2^e/(2^4-1)) if e == 0 (mod 4). a(2^e) = 2 + floor(2^e/(2^4-1)) if e == {1,2,3} mod 4. - R. J. Mathar, Oct 22 2017
Conjecture: a(p^e) = 1 + floor((p-1)*p^(e+3)/(gcd(p-1,4)*(p^4-1))) for odd primes p. - R. J. Mathar, Oct 22 2017
From Samer Seraj, Nov 09 2022: (Start)
The above conjectures are correct, and a unified form is:
a(p^m) = alpha*((p^3 / p^beta)*((p^m - p^gamma)/(p^4 -1)) + ceiling((p^gamma)/(p^(beta+1)))) + 1, where p is any prime, m is any positive integer, alpha = (p-1)/gcd(4,p-1), beta = 3 if p = 2 or beta = 0 if p is odd, and gamma = 4 if 4|m or gamma = (m mod 4) otherwise. (End)