cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052276 Nonnegative numbers of the form n^3 (+/-) 3, n >= 0.

Original entry on oeis.org

3, 4, 5, 11, 24, 30, 61, 67, 122, 128, 213, 219, 340, 346, 509, 515, 726, 732, 997, 1003, 1328, 1334, 1725, 1731, 2194, 2200, 2741, 2747, 3372, 3378, 4093, 4099, 4910, 4916, 5829, 5835, 6856, 6862, 7997, 8003, 9258, 9264, 10645, 10651
Offset: 1

Views

Author

N. J. A. Sloane, Feb 05 2000

Keywords

Comments

It is conjectured that A003325 and A052276 (the current sequence) have infinitely many numbers in common, although only one example (128) is known.
The next such example must be larger than 2*10^12. - M. F. Hasler, Jan 10 2021

Programs

  • Maple
    3,4,op(map(n -> (n^3-3,n^3+3), [$2..100])); # Robert Israel, Jul 09 2015
  • PARI
    Vec(x*(5*x^7-8*x^6-9*x^5+19*x^4+3*x^3-8*x^2+x+3)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Jul 09 2015
    
  • PARI
    apply( {A052276(n)=(n\/2)^3+3*(-1)^n+(n==1)*5}, [1..99]) \\ M. F. Hasler, Jan 10 2021
    
  • Python
    def A052276(n): return (n+1>>1)**3+(-3 if n&1 else 3) if n>1 else 3 # Chai Wah Wu, Jun 27 2025

Formula

a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>8. - Colin Barker, Jul 09 2015
G.f.: x*(5*x^7-8*x^6-9*x^5+19*x^4+3*x^3-8*x^2+x+3) / ((x-1)^4*(x+1)^3). - Colin Barker, Jul 09 2015
a(n) = ((2*n+1)*(n^2+n+1) - (-1)^n*(3*n^2+3*n-47))/16 for n >= 2. - Robert Israel, Jul 09 2015
a(n) = ceiling(n/2)^3 + 3*(-1)^n for all n > 1. - M. F. Hasler, Jan 10 2021