A052276 Nonnegative numbers of the form n^3 (+/-) 3, n >= 0.
3, 4, 5, 11, 24, 30, 61, 67, 122, 128, 213, 219, 340, 346, 509, 515, 726, 732, 997, 1003, 1328, 1334, 1725, 1731, 2194, 2200, 2741, 2747, 3372, 3378, 4093, 4099, 4910, 4916, 5829, 5835, 6856, 6862, 7997, 8003, 9258, 9264, 10645, 10651
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
Programs
-
Maple
3,4,op(map(n -> (n^3-3,n^3+3), [$2..100])); # Robert Israel, Jul 09 2015
-
PARI
Vec(x*(5*x^7-8*x^6-9*x^5+19*x^4+3*x^3-8*x^2+x+3)/((x-1)^4*(x+1)^3) + O(x^100)) \\ Colin Barker, Jul 09 2015
-
PARI
apply( {A052276(n)=(n\/2)^3+3*(-1)^n+(n==1)*5}, [1..99]) \\ M. F. Hasler, Jan 10 2021
-
Python
def A052276(n): return (n+1>>1)**3+(-3 if n&1 else 3) if n>1 else 3 # Chai Wah Wu, Jun 27 2025
Formula
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7) for n>8. - Colin Barker, Jul 09 2015
G.f.: x*(5*x^7-8*x^6-9*x^5+19*x^4+3*x^3-8*x^2+x+3) / ((x-1)^4*(x+1)^3). - Colin Barker, Jul 09 2015
a(n) = ((2*n+1)*(n^2+n+1) - (-1)^n*(3*n^2+3*n-47))/16 for n >= 2. - Robert Israel, Jul 09 2015
a(n) = ceiling(n/2)^3 + 3*(-1)^n for all n > 1. - M. F. Hasler, Jan 10 2021
Comments