This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052277 #38 Jun 06 2022 08:16:25 %S A052277 1,90,113400,681080400,12504636144000,548828480360160000, %T A052277 49229914688306352000000,8094874872198213459360000000, %U A052277 2252447502438386084347676160000000,997586474354936812896742294502400000000,669959124447288464805194190141921792000000000 %N A052277 a(n) = (4n+2)!/2^(2n+1). %H A052277 J. M. Borwein, D. M. Bradley, and D. J. Broadhurst, <a href="https://arxiv.org/abs/hep-th/9611004">Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k</a>, arXiv:hep-th/9611004, 1996. %H A052277 Roudy El Haddad, <a href="https://arxiv.org/abs/2102.00821">Multiple Sums and Partition Identities</a>, arXiv:2102.00821 [math.CO], 2021. %H A052277 Roudy El Haddad, <a href="https://doi.org/10.7546/nntdm.2022.28.2.200-233">A generalization of multiple zeta value. Part 2: Multiple sums</a>. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233. %F A052277 sin(x)*sinh(x) = Sum_{n>=0} (-1)^n*x^(4n+2)/a(n). - _Benoit Cloitre_, Feb 02 2002 %F A052277 a(n) = Pi^(4n)/Zeta({4}_n) where ({4}_n) is the standard multiple zeta values notation for (4, ..., 4) where the multiplicity of 4 is n. - _Roudy El Haddad_, Feb 19 2022 %F A052277 From _Amiram Eldar_, Feb 25 2022: (Start) %F A052277 Sum_{n>=0} 1/a(n) = (cosh(sqrt(2)) - cos(sqrt(2)))/2. %F A052277 Sum_{n>=0} (-1)^n/a(n) = sin(1)*sinh(1). (End) %t A052277 Table[(4n+2)!/2^(2n+1), {n, 0, 10}] (* _Amiram Eldar_, Feb 25 2022 *) %o A052277 (PARI) a(n) = (4*n+2)!/2^(2*n+1); \\ _Michel Marcus_, Feb 20 2022 %Y A052277 Cf. A002432 (denominators of zeta(2*n)/Pi^(2*n)). %Y A052277 Cf. A068447, A067912, A013662 (zeta(4)). %K A052277 nonn,easy %O A052277 0,2 %A A052277 _N. J. A. Sloane_, Feb 05 2000