This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052287 #35 Aug 08 2021 11:23:51 %S A052287 3,6,9,12,18,24,27,30,36,45,48,54,60,63,72,81,84,90,96,108,120,126, %T A052287 132,135,144,150,162,168,180,189,192,198,210,216,225,234,240,243,252, %U A052287 264,270,288,297,300,306,312,315,324,330,336,351,360,378,384,390,396 %N A052287 Start with 3; the general rule is "if x is present then so is x*y for every y <= x". %H A052287 T. D. Noe, <a href="/A052287/b052287.txt">Table of n, a(n) for n = 1..1000</a> %F A052287 x is a term if and only if x = 3*p1*p2*...*pk with primes 2 <= p1 <= p2 <= ... <= pk and 3*p1*p2*...*pi >= p(i+1) for all i < k. %F A052287 a(n) = 3 * A196149(n). - _Reinhard Zumkeller_, Sep 28 2011 %F A052287 The number of terms <= x is c*x/log(x) + O(x/(log(x))^2), where c = 0.68514..., and a(n) = C*n*log(n*log(n)) + O(n), where C = 1/c = 1.45954... This follows from the formula just above. - _Andreas Weingartner_, Jun 30 2021 %e A052287 63 is an element because 63 = 3*3*7 and 3 <= 3 and 7 <= 3*3. %p A052287 N:= 1000: # get all terms <= N %p A052287 S:= {3}: %p A052287 New:= {3}: %p A052287 while New <> {} do %p A052287 x:= New[1]; %p A052287 New:= subsop(1=NULL,New); %p A052287 R:= {seq(k*x, k=1..min(x,N/x))} minus S; %p A052287 S:= S union R; %p A052287 New:= New union R; %p A052287 od: %p A052287 sort(convert(S,list)); # _Robert Israel_, Aug 27 2015 %t A052287 3 Select[Range[132], Max[#[[2]]/#[[1]] & /@ Partition[Divisors[#], 2, 1]] <= 3 &] (* _Michael De Vlieger_, Aug 27 2015, after _Harvey P. Dale_ at A196149 *) %o A052287 (Haskell) %o A052287 import Data.List.Ordered (union) %o A052287 a052287 n = a052287_list !! (n-1) %o A052287 a052287_list = f [3] where %o A052287 f (x:xs) = x : f (xs `union` map (x *) [2..x]) %o A052287 -- _Reinhard Zumkeller_, Jun 25 2015, Sep 28 2011 %Y A052287 If instead we start with 2, we obtain the "Nullwertzahlen sequence" A047836. %Y A052287 Cf. A196149. %K A052287 easy,nice,nonn %O A052287 1,1 %A A052287 _Giuseppe Melfi_, Feb 08 2000 %E A052287 More terms from _Reinhard Zumkeller_, Jun 22 2003