cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052353 Least prime in A031926 (lesser of 8-twins) whose distance to the next 8-twin is 6*n.

Original entry on oeis.org

389, 683, 719, 359, 1523, 2699, 401, 929, 2153, 1373, 2459, 2531, 1439, 1733, 8573, 2741, 4943, 9059, 5051, 983, 3491, 9173, 7529, 761, 1823, 1571, 3041, 5399, 1193, 2273, 491, 8171, 23549, 5189, 5813, 53189, 3221, 4349, 32789, 49823, 18749, 19001, 10979, 89, 19433
Offset: 2

Views

Author

Labos Elemer, Mar 07 2000

Keywords

Comments

The smallest distance [A052380(4)] between 8-twins is 12, while its minimal increment is 6.
a(n) = p yields a prime quadruple of [p, p+8, p+6n, p+6n+8] and difference pattern of [8, 6n-8, 8].

Examples

			a(2) = 389 specifies quadruple of [389, 397, 401, 409] with no prime between 397 and 401;
a(11) = 1373 gives quadruple of [1373, 1381, 1439, 1447] and [8, 58, 8] difference pattern with 6 primes in the central gap.
		

Crossrefs

Programs

  • Mathematica
    seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 8] // Flatten; pp = p[[i]]; dd = Differences[pp]/6 - 1; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[10000] (* Amiram Eldar, Mar 05 2025 *)
  • PARI
    list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 8, q2 = p1; if(q1 > 0, d = (q2 - q1)/6 - 1; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025

Extensions

Name and offset corrected by Amiram Eldar, Mar 05 2025