A052354 Least prime in A031928 (lesser of 10-twins) whose distance to the next 10-twin is 6*n.
409, 691, 787, 547, 2053, 139, 4861, 283, 181, 25087, 337, 709, 2917, 829, 14197, 919, 3001, 33589, 2767, 421, 8221, 1879, 5179, 1249, 1471, 10141, 5011, 20533, 4483, 54091, 13249, 4663, 27883, 5869, 41443, 8599, 23311, 9049, 40699, 82591, 3109, 5323, 44917, 11971
Offset: 2
Keywords
Examples
a(3) = 691 results in [691, 701, 709, 719] quadruple and [10, 8, 10] difference pattern without primes in the median gap. a(11) = 25087 yields [25087, 25097, 25153, 25163] and [10, 56, 10] with 5 primes in the middle gap.
Links
- Amiram Eldar, Table of n, a(n) for n = 2..1001
Crossrefs
Programs
-
Mathematica
seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 10] // Flatten; pp = p[[i]]; dd = Differences[pp]/6 - 1; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[10000] (* Amiram Eldar, Mar 05 2025 *)~
-
PARI
list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 10, q2 = p1; if(q1 > 0, d = (q2 - q1)/6 - 1; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025
Extensions
Name and offset corrected by Amiram Eldar, Mar 05 2025
Comments