A052376 Primes followed by a [10,2,10] prime difference pattern of A001223.
409, 1039, 2017, 2719, 3571, 4219, 4231, 4261, 4327, 6079, 6121, 6679, 6781, 8209, 11047, 11149, 11959, 12241, 15277, 19531, 19687, 21577, 21589, 26881, 27529, 28087, 28297, 29389, 30829, 30859, 31069, 32401, 42061, 45307, 47797, 48109
Offset: 1
Keywords
Examples
p=1039 begins [1039,1049,1051,1061] prime quadruple with the appropriate difference pattern: [10,2,10]=[d,D-d,d], so d=10, D=12.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1780
Programs
-
Mathematica
{p, q, r, s} = {2, 3, 5, 7}; lst = {}; While[p < 50000, If[ Differences[{p, q, r, s}] == {10, 2, 10}, AppendTo[lst, p]]; {p, q, r, s} = {q, r, s, NextPrime@ s}]; lst (* Robert G. Wilson v, Jul 15 2015 *)
Formula
a(n)=p, a prime which begins a [p, p+d, p+D, p+D+d]=[p, p+10, p+12, p+22] prime quadruple.
a(n) = A259025(n)-11. - Robert G. Wilson v, Jul 15 2015
Comments