cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052385 a(n)*10^n are the denominators of the greedy alternating Egyptian fraction expansion of Pi - 3 of the form Sum_{n>=0} (-1)^n / (a(n)*10^n).

This page as a plain text file.
%I A052385 #16 Jan 01 2024 14:20:54
%S A052385 7,79,7498,5830114,8652011824287,13597204960705459608723126,
%T A052385 34810495772672927583903155370200945603822050731477,
%U A052385 1443540369391032855921234984363709782471552979298036142515612532020988429757781997263178546460721652
%N A052385 a(n)*10^n are the denominators of the greedy alternating Egyptian fraction expansion of Pi - 3 of the form Sum_{n>=0} (-1)^n / (a(n)*10^n).
%H A052385 Amiram Eldar, <a href="/A052385/b052385.txt">Table of n, a(n) for n = 0..10</a>
%F A052385 a(n) = floor((-1)^n/(s(n-1)*10^n)), where s(n) = Pi - 3 - Sum_{k=0..n} (-1)^k/(a(k)*10^k).
%e A052385 Pi = 3 + 1/7 - 1/(10 * 79) + 1/(10^2 * 7498) - 1/(10^3 * 5830114) + ...
%t A052385 s={}; x = Pi - 3; Do[a = Floor[1/((-10)^k * x)]; AppendTo[s, a]; x-=1/((-10)^k*a), {k, 0, 7}]; s (* _Amiram Eldar_, Jan 23 2019 *)
%Y A052385 Cf. A000796, A001466, A014013.
%K A052385 easy,frac,nonn
%O A052385 0,1
%A A052385 Boris Gourevitch (sai1042(AT)ensai.fr), Mar 10 2000
%E A052385 a(6)-a(10) from _Amiram Eldar_, Jan 23 2019