This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052395 #20 Jan 09 2024 09:39:43 %S A052395 1,1,0,6,28,193,1140,7688,52364,373560,2732836,20506254,156899748, %T A052395 1221179922,9642327324,77092881840,623120435820,5085013101160, %U A052395 41850590485164,347060754685884,2897800074184240,24344668688255109,205667186830447412,1746375819789491992 %N A052395 Number of unlabeled asymmetric 4-ary cacti having n polygons. %H A052395 Andrew Howroyd, <a href="/A052395/b052395.txt">Table of n, a(n) for n = 0..200</a> %H A052395 Miklos Bona, Michel Bousquet, Gilbert Labelle, and Pierre Leroux, <a href="https://doi.org/10.1006/aama.1999.0665">Enumeration of m-ary cacti</a>, Advances in Applied Mathematics, 24 (2000), 22-56. %H A052395 <a href="/index/Ca#cacti">Index entries for sequences related to cacti</a> %F A052395 a(n) = (1/n)*(Sum_{d|n} mu(n/d)*binomial(4*d, d)) - 3*binomial(4*n, n)/(3*n+1) for n > 0. - _Andrew Howroyd_, Apr 30 2018 %t A052395 a[0] = 1; %t A052395 a[n_] := DivisorSum[n, MoebiusMu[n/#] Binomial[4#, #]&]/n - 3 Binomial[4n, n]/(3n + 1); %t A052395 Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Jun 29 2018, after _Andrew Howroyd_ *) %o A052395 (PARI) a(n) = if(n==0, 1, sumdiv(n, d, moebius(n/d)*binomial(4*d, d))/n - 3*binomial(4*n, n)/(3*n+1)) \\ _Andrew Howroyd_, Apr 30 2018 %Y A052395 Column k=4 of A303913. %Y A052395 Cf. A052394, A054362. %K A052395 nonn %O A052395 0,4 %A A052395 _Simon Plouffe_ %E A052395 Terms a(13) and beyond from _Andrew Howroyd_, May 02 2018