This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052405 #54 Jun 28 2025 15:43:32 %S A052405 0,1,2,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,24,25,26,27,28, %T A052405 29,40,41,42,44,45,46,47,48,49,50,51,52,54,55,56,57,58,59,60,61,62,64, %U A052405 65,66,67,68,69,70,71,72,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89 %N A052405 Numbers without 3 as a digit. %C A052405 This sequence also represents the minimal number of straight lines of a covering tree to cover n X n points arranged in a symmetrical grid. - _Marco RipĂ _, Sep 20 2018 %H A052405 Reinhard Zumkeller, <a href="/A052405/b052405.txt">Table of n, a(n) for n = 1..10000</a> %H A052405 M. F. Hasler, <a href="/wiki/Numbers_avoiding_certain_digits">Numbers avoiding certain digits</a>, OEIS Wiki, Jan 12 2020. %H A052405 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>. %F A052405 a(n) >> n^k with k = log(10)/log(9) = 1.0479.... - _Charles R Greathouse IV_, Oct 16 2012 %F A052405 a(n) = replace digits d > 2 by d + 1 in base-9 representation of n - 1. - _Reinhard Zumkeller_, Oct 07 2014 %F A052405 Sum_{n>1} 1/a(n) = A082832 = 20.569877... (Kempner series). - _Bernard Schott_, Jan 12 2020, edited by _M. F. Hasler_, Jan 14 2020 %e A052405 22 has no 3s among its digits, hence it is in the sequence. %e A052405 23 has one 3 among its digits, hence it is not in the sequence. %p A052405 a:= proc(n) local l, m; l, m:= 0, n-1; %p A052405 while m>0 do l:= (d-> %p A052405 `if`(d<3, d, d+1))(irem(m, 9, 'm')), l %p A052405 od; parse(cat(l))/10 %p A052405 end: %p A052405 seq(a(n), n=1..100); # _Alois P. Heinz_, Aug 01 2016 %t A052405 Select[Range[0, 89], DigitCount[#, 10, 3] == 0 &] (* _Alonso del Arte_, Oct 16 2012 *) %o A052405 (Magma) [ n: n in [0..89] | not 3 in Intseq(n) ]; // _Bruno Berselli_, May 28 2011 %o A052405 (sh) seq 0 1000 | grep -v 3; # _Joerg Arndt_, May 29 2011 %o A052405 (PARI) %o A052405 is(n)=n=digits(n);for(i=1,#n,if(n[i]==3,return(0)));1 \\ _Charles R Greathouse IV_, Oct 16 2012 %o A052405 apply( {A052405(n)=fromdigits(apply(d->d+(d>2),digits(n-1,9)))}, [1..99]) \\ a(n) %o A052405 next_A052405(n, d=digits(n+=1))={for(i=1, #d, d[i]==3&& return((1+n\d=10^(#d-i))*d)); n} \\ least a(k) > n. Used in A038611. \\ _M. F. Hasler_, Jan 11 2020 %o A052405 (Haskell) %o A052405 a052405 = f . subtract 1 where %o A052405 f 0 = 0 %o A052405 f v = 10 * f w + if r > 2 then r + 1 else r where (w, r) = divMod v 9 %o A052405 -- _Reinhard Zumkeller_, Oct 07 2014 %o A052405 (Python) %o A052405 from gmpy2 import digits %o A052405 def A052405(n): return int(digits(n-1,9).translate(str.maketrans('345678','456789'))) # _Chai Wah Wu_, Jun 28 2025 %Y A052405 Cf. A004178, A004722, A038611 (subset of primes), A082832 (Kempner series). %Y A052405 Cf. A052382 (without 0), A052383 (without 1), A052404 (without 2), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9). %Y A052405 Cf. A011533 (complement). %K A052405 base,easy,nonn %O A052405 1,3 %A A052405 _Henry Bottomley_, Mar 13 2000 %E A052405 Offset changed by _Reinhard Zumkeller_, Oct 07 2014