cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052436 Number of canonical polygons of n sides.

This page as a plain text file.
%I A052436 #48 Apr 07 2025 21:44:46
%S A052436 0,0,1,3,3,9,13,52,140,501,1763,6785,25571,99907,392230,1564989,
%T A052436 6297892,25601641,104846143,432629580
%N A052436 Number of canonical polygons of n sides.
%C A052436 Canonical polygons are those drawn on a square unit lattice, with all sides equal to 1 or sqrt(2), without crossing sides or double vertices. Rotations and reflections do not generate different canonical polygons. There are exactly 8 convex canonical polygons: 1 with n=3, 3 with n=4, 1 with n=5, 2 with n=6, 1 with n=8. - _Ronald Kyrmse_, Apr 02 2025
%H A052436 Lars Blomberg, <a href="/A052436/a052436_1.pdf">Examples of Canonical Polygons for n = 3..20</a>
%H A052436 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a052/A052436.java">Java program</a> (github)
%H A052436 Ronald Kyrmse, <a href="https://www.academia.edu/53538946/Canonical_Polygons_v_3">Canonical Polygons</a>.
%H A052436 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BinomialCoefficient.html">Binomial Coefficient</a>.
%H A052436 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CanonicalPolygon.html">Canonical Polygon</a>.
%Y A052436 Cf. A307387, A307391, A307426, A307454, A307455, A307456, A307519.
%K A052436 nonn,more
%O A052436 1,4
%A A052436 _Eric W. Weisstein_
%E A052436 Corrected and extended by Keith Schneider (schneidk(AT)email.unc.edu), Oct 25 2007
%E A052436 Offset changed to 1 and a(14)-a(18) from _Lars Blomberg_, Feb 18 2019
%E A052436 a(19)-a(20) from _Lars Blomberg_, Apr 23 2019
%E A052436 a(12) corrected by _Sean A. Irvine_, Nov 12 2021