This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052446 #55 Feb 16 2025 08:32:42 %S A052446 0,1,1,3,10,52,351,3714,63638,1912203,103882478,10338614868, %T A052446 1892863194064,639799762452639,400857034314325045, %U A052446 467526363203064793081,1019286659457016864347582,4170114225096278323394128049,32130213534058019378134295287305 %N A052446 Number of unlabeled simple connected bridged graphs on n nodes. %C A052446 These are unlabeled connected graphs with spanning edge-connectivity 1, where the spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph. - _Gus Wiseman_, Sep 02 2019 %H A052446 Jean-François Alcover, <a href="/A052446/b052446.txt">Table of n, a(n) for n = 1..22</a> %H A052446 Travis Hoppe and Anna Petrone, <a href="https://github.com/thoppe/Encyclopedia-of-Finite-Graphs">Encyclopedia of Finite Graphs</a> %H A052446 T. Hoppe and A. Petrone, <a href="http://arxiv.org/abs/1408.3644">Integer sequence discovery from small graphs</a>, arXiv preprint arXiv:1408.3644 [math.CO], 2014. %H A052446 T. Hoppe and A. Petrone, <a href="http://doi.org/10.1016/j.dam.2015.07.017">Integer sequence discovery from small graphs</a>, Discr. Appl. Math. 201 (2016) 172-181 %H A052446 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/k-Edge-ConnectedGraph.html">k-Edge-Connected Graph</a> %H A052446 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BridgedGraph.html">Bridged Graph</a> %H A052446 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConnectedGraph.html">Connected Graph</a> %H A052446 Gus Wiseman, <a href="/A052446/a052446.png">The a(2) = 1 through a(5) = 10 connected bridged graphs</a> %F A052446 a(n) = A001349(n) - A007146(n). %t A052446 A001349 = Cases[Import["https://oeis.org/A001349/b001349.txt", "Table"], {_, _}][[All, 2]]; %t A052446 A007146 = Cases[Import["https://oeis.org/A007146/b007146.txt", "Table"], {_, _}][[All, 2]] ; %t A052446 a[n_] := A001349[[n + 1]] - A007146[[n]]; %t A052446 Array[a, 22] (* _Jean-François Alcover_, Nov 09 2019 *) %Y A052446 Cf. other k-edge-connected unlabeled graph sequences A052446, A052447, A052448, A241703, A241704, A241705. %Y A052446 Cf. A001349 (number of simple connected graphs). %Y A052446 Cf. A007146 (number of simple connected bridgeless graphs). %Y A052446 Cf. A263914 (number of simple bridgeless graphs). %Y A052446 Cf. A263915 (number of simple bridged graphs). %Y A052446 Column k = 1 of A263296. %Y A052446 Row sums of A327077 if the first column is removed. %Y A052446 BII-numbers of set-systems with spanning edge-connectivity 1 are A327111. %Y A052446 The labeled version is A327071. %Y A052446 Cf. A002494, A327069, A327074, A327109, A327144. %K A052446 nonn,hard %O A052446 1,4 %A A052446 _Eric W. Weisstein_, May 08 2000 %E A052446 a(8) and a(9) and better description by _Eric W. Weisstein_, Nov 07 2010 %E A052446 a(10) from the Encyclopedia of Finite Graphs by _Travis Hoppe_ and _Anna Petrone_, Apr 22 2014 %E A052446 Additional terms from A001349 and A007146 by _Eric W. Weisstein_, Oct 29 2015 %E A052446 a(18)-a(22) from A001349 and A007146 by _Jean-François Alcover_, Nov 09 2019