cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052512 Number of rooted labeled trees of height at most 2.

This page as a plain text file.
%I A052512 #49 Sep 08 2022 08:44:59
%S A052512 0,1,2,9,40,205,1176,7399,50576,372537,2936080,24617131,218521128,
%T A052512 2045278261,20112821288,207162957135,2228888801056,24989309310961,
%U A052512 291322555295904,3524580202643155,44176839081266360,572725044269255661,7668896804574138232,105920137923940473079
%N A052512 Number of rooted labeled trees of height at most 2.
%C A052512 Equivalently, number of mappings f from a set of n elements into itself such that f o f (f applied twice) is constant. - _Robert FERREOL_, Mar 05 2016
%H A052512 Alois P. Heinz, <a href="/A052512/b052512.txt">Table of n, a(n) for n = 0..300</a>
%H A052512 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=58">Encyclopedia of Combinatorial Structures 58</a>
%F A052512 E.g.f.: x*exp(x*exp(x)).
%F A052512 a(n) = n * A000248(n-1). - _Olivier Gérard_, Aug 03 2012.
%F A052512 a(n) = Sum_{k=0..n-1} n*C(n-1,k)*(n-k-1)^k. - _Alois P. Heinz_, Mar 15 2013
%e A052512 From _Robert FERREOL_, Mar 05 2016: (Start)
%e A052512 For n = 3 the a(3) = 9 mappings from {a,b,c} into itself are:
%e A052512 f_1(a) = f_1(b) = f_1(c) = a
%e A052512 f_2(c) = b, f_2(b) = f_2(a) = a
%e A052512 f_3(b) = c, f_3(c) = f_3(a) = a
%e A052512 and 6 others, associated to b and c.
%e A052512 (End)
%p A052512 spec := [S,{S=Prod(Z,Set(T1)), T2=Z, T1=Prod(Z,Set(T2))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%p A052512 # second Maple program:
%p A052512 a:= n-> n*add(binomial(n-1, k)*(n-k-1)^k, k=0..n-1);
%p A052512 seq(a(n), n=0..30);  # _Alois P. Heinz_, Mar 15 2013
%t A052512 nn=20; a=x Exp[x]; Range[0,nn]! CoefficientList[Series[x Exp[a], {x,0,nn}], x] (* _Geoffrey Critzer_, Sep 19 2012 *)
%o A052512 (PARI)
%o A052512 N=33;  x='x+O('x^N);
%o A052512 egf=x*exp(x*exp(x));
%o A052512 v=Vec(serlaplace(egf));
%o A052512 vector(#v+1,n,if(n==1,0,v[n-1]))
%o A052512 /* _Joerg Arndt_, Sep 15 2012 */
%o A052512 (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x*Exp(x*Exp(x)) )); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // _G. C. Greubel_, May 13 2019
%o A052512 (Sage) m = 20; T = taylor(x*exp(x*exp(x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, May 13 2019
%Y A052512 Cf. A000248 (forests with n nodes and height at most 1).
%Y A052512 Cf. A000551.
%K A052512 easy,nonn
%O A052512 0,3
%A A052512 encyclopedia(AT)pommard.inria.fr, Jan 25 2000