cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052516 Number of pairs of sets of cardinality at least 3.

This page as a plain text file.
%I A052516 #44 Sep 08 2022 08:44:59
%S A052516 0,0,0,0,0,0,20,70,182,420,912,1914,3938,8008,16172,32526,65262,
%T A052516 130764,261800,523906,1048154,2096688,4193796,8388054,16776614,
%U A052516 33553780,67108160,134216970
%N A052516 Number of pairs of sets of cardinality at least 3.
%C A052516 The number of functions f:[n]->[2] such that f maps at least 3 elements to 1 and at least 3 elements to 2.  a(6) = 20 since there are C(6,3) ways to choose the 3 elements of {1,2,3,4,5,6} that f maps to 1. - _Dennis P. Walsh_, Dec 09 2014
%H A052516 Vincenzo Librandi, <a href="/A052516/b052516.txt">Table of n, a(n) for n = 0..2000</a>
%H A052516 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=82">Encyclopedia of Combinatorial Structures 82</a>
%H A052516 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-9,7,-2).
%F A052516 E.g.f.: (exp(x) -1)^2 -x*(2+x)*exp(x) +2*x +2*x^2 +x^3 +x^4/4.
%F A052516 (n-1)*a(n+2) + (1-3*n)*a(n+1) + 2*(n+1)*a(n) = 0, a(0) = .. a(5) = 0, a(6) = 20.
%F A052516 G.f.: 2*x^6*(10-15*x+6*x^2)/((1-x)^3*(1-2*x)). - _Colin Barker_, Feb 19 2012
%F A052516 a(n) = max(0,2^n-n^2-n-2). - _Dennis P. Walsh_, Dec 09 2014
%F A052516 E.g.f.: (exp(x) - 1 - x - x^2/2)^2. - _Dennis P. Walsh_, Dec 09 2014
%p A052516 Pairs spec := [S,{S=Prod(B,B),B=Set(Z,3 <= card)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%p A052516 with (combstruct):ZL:=[S,{S=Sequence(U,card=r),U=Set(Z,card>=3)}, labeled]: seq(count(subs(r=2,ZL),size=m),m=0..20); # _Zerinvary Lajos_, Mar 09 2007
%p A052516 seq(max(0,2^n-n^2-n-2), n=0..40); # _Dennis P. Walsh_, Dec 09 2014
%t A052516 Table[Max[0,2^n-n^2-n-2],{n,0,30}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 15 2011*)
%o A052516 (PARI) a(n)=max(0,2^n-n^2-n-2) \\ _Charles R Greathouse IV_, Nov 20 2011
%o A052516 (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (Exp(x) -1-x-x^2/2)^2 )); [0,0,0,0,0] cat [Factorial(n+5)*b[n]: n in [1..m-6]]; // _G. C. Greubel_, May 13 2019
%o A052516 (Sage) (2*x^6*(10-15*x+6*x^2)/((1-x)^3*(1-2*x))).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, May 13 2019
%Y A052516 Cf. A052515.
%K A052516 easy,nonn
%O A052516 0,7
%A A052516 encyclopedia(AT)pommard.inria.fr, Jan 25 2000