This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052518 #22 Sep 08 2022 08:44:59 %S A052518 0,0,0,0,6,40,260,1848,14616,128448,1246752,13273920,153996480, %T A052518 1935048960,26193473280,380120670720,5888620684800,97007636275200, %U A052518 1693590745190400,31237853849395200,607035345406156800 %N A052518 Number of pairs of cycles of cardinality at least 2. %H A052518 G. C. Greubel, <a href="/A052518/b052518.txt">Table of n, a(n) for n = 0..445</a> %H A052518 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=84">Encyclopedia of Combinatorial Structures 84</a> %F A052518 E.g.f.: log(1-x)^2 + 2*x*log(1-x) + x^2. %F A052518 n*a(n+2) + (1-n-2*n^2)*a(n+1) - n*(1-n^2)*a(n) = 0, with a(0) = ... = a(3) = 0, a(4) = 3!. %F A052518 a(n) = 2*(n-2)!*((n-1)*(Psi(n) + gamma) - n), n>2. - _Vladeta Jovovic_, Sep 21 2003 %p A052518 Pairs spec := [S,{B=Cycle(Z,2 <= card),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); %t A052518 With[{m = 25}, CoefficientList[Series[Log[1-x]^2 +2*x*Log[1-x] +x^2, {x, 0, m}], x]*Range[0, m]!] (* _G. C. Greubel_, May 13 2019 *) %o A052518 (PARI) a(n) = if (n <= 2, 0, round(2*(n-2)!*((n-1)*(psi(n)+Euler)-n))); \\ _Michel Marcus_, Jul 08 2015 %o A052518 (PARI) my(x='x+O('x^25)); concat(vector(4), Vec(serlaplace( log(1-x)^2 + 2*x*log(1-x) + x^2 ))) \\ _G. C. Greubel_, May 13 2019 %o A052518 (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Log(1-x)^2 + 2*x*Log(1-x) + x^2 )); [0,0,0,0] cat [Factorial(n+3)*b[n]: n in [1..m-4]]; // _G. C. Greubel_, May 13 2019 %o A052518 (Sage) m = 25; T = taylor(log(1-x)^2 + 2*x*log(1-x) + x^2, x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, May 13 2019 %Y A052518 Cf. A000254, A000276. %K A052518 easy,nonn %O A052518 0,5 %A A052518 encyclopedia(AT)pommard.inria.fr, Jan 25 2000