cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052518 Number of pairs of cycles of cardinality at least 2.

This page as a plain text file.
%I A052518 #22 Sep 08 2022 08:44:59
%S A052518 0,0,0,0,6,40,260,1848,14616,128448,1246752,13273920,153996480,
%T A052518 1935048960,26193473280,380120670720,5888620684800,97007636275200,
%U A052518 1693590745190400,31237853849395200,607035345406156800
%N A052518 Number of pairs of cycles of cardinality at least 2.
%H A052518 G. C. Greubel, <a href="/A052518/b052518.txt">Table of n, a(n) for n = 0..445</a>
%H A052518 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=84">Encyclopedia of Combinatorial Structures 84</a>
%F A052518 E.g.f.: log(1-x)^2 + 2*x*log(1-x) + x^2.
%F A052518 n*a(n+2) + (1-n-2*n^2)*a(n+1) - n*(1-n^2)*a(n) = 0, with a(0) = ... = a(3) = 0, a(4) = 3!.
%F A052518 a(n) = 2*(n-2)!*((n-1)*(Psi(n) + gamma) - n), n>2. - _Vladeta Jovovic_, Sep 21 2003
%p A052518 Pairs spec := [S,{B=Cycle(Z,2 <= card),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%t A052518 With[{m = 25}, CoefficientList[Series[Log[1-x]^2 +2*x*Log[1-x] +x^2, {x, 0, m}], x]*Range[0, m]!] (* _G. C. Greubel_, May 13 2019 *)
%o A052518 (PARI) a(n) = if (n <= 2, 0, round(2*(n-2)!*((n-1)*(psi(n)+Euler)-n))); \\ _Michel Marcus_, Jul 08 2015
%o A052518 (PARI) my(x='x+O('x^25)); concat(vector(4), Vec(serlaplace( log(1-x)^2 + 2*x*log(1-x) + x^2 ))) \\ _G. C. Greubel_, May 13 2019
%o A052518 (Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Log(1-x)^2 + 2*x*Log(1-x) + x^2 )); [0,0,0,0] cat [Factorial(n+3)*b[n]: n in [1..m-4]]; // _G. C. Greubel_, May 13 2019
%o A052518 (Sage) m = 25; T = taylor(log(1-x)^2 + 2*x*log(1-x) + x^2, x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # _G. C. Greubel_, May 13 2019
%Y A052518 Cf. A000254, A000276.
%K A052518 easy,nonn
%O A052518 0,5
%A A052518 encyclopedia(AT)pommard.inria.fr, Jan 25 2000