This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052549 #62 Jul 03 2025 10:52:36 %S A052549 1,4,9,19,39,79,159,319,639,1279,2559,5119,10239,20479,40959,81919, %T A052549 163839,327679,655359,1310719,2621439,5242879,10485759,20971519, %U A052549 41943039,83886079,167772159,335544319,671088639,1342177279,2684354559 %N A052549 a(n) = 5*2^(n-1) - 1, n>0, with a(0)=1. %C A052549 A153894 is a better version of this sequence. - _N. J. A. Sloane_, Feb 07 2009 %C A052549 Equals binomial transform of [1, 3, 2, 3, 2, 3, 2, ...]. - _Gary W. Adamson_, May 11 2008 %H A052549 G. C. Greubel, <a href="/A052549/b052549.txt">Table of n, a(n) for n = 0..1000</a> %H A052549 David Eppstein, <a href="https://arxiv.org/abs/1804.07396">Making Change in 2048</a>, arXiv:1804.07396 [cs.DM], 2018. %H A052549 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=486">Encyclopedia of Combinatorial Structures 486</a> %H A052549 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2). %F A052549 G.f.: (1 + x - x^2)/((1-2*x)*(1-x)). %F A052549 a(n) = 2*a(n-1) + 1, for n>1, with a(0)=1 and a(1)=4. %F A052549 E.g.f.: (5*exp(2*x) - 2*exp(x) - 1)/2. - _G. C. Greubel_, May 07 2019 %F A052549 a(n) = 1 + A000225(n-1) + A000225(n+1) for n > 0. - _Gennady Eremin_, Sep 08 2023 %p A052549 spec := [S,{S=Prod(Sequence(Union(Z,Z)),Union(Z,Sequence(Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); %t A052549 {1}~Join~Array[5*2^(# -1)-1 &,30] (* _Michael De Vlieger_, Jul 18 2018 *) %t A052549 LinearRecurrence[{3,-2}, {1,4,9}, 30] (* _G. C. Greubel_, May 07 2019 *) %o A052549 (PARI) vector(30, n, n--; if(n==0, 1, 5*2^(n-1) -1)) \\ _G. C. Greubel_, May 07 2019 %o A052549 (Magma) [n eq 0 select 1 else 5*2^(n-1) -1: n in [0..30]]; // _G. C. Greubel_, May 07 2019 %o A052549 (Sage) [1]+[5*2^(n-1) -1 for n in (1..30)] # _G. C. Greubel_, May 07 2019 %o A052549 (GAP) Concatenation([1], List([1..30], n-> 5*2^(n-1) -1)); # _G. C. Greubel_, May 07 2019 %o A052549 (Python) %o A052549 a052549 = [1] + [(5<<(n-1))-1 for n in range(1, 30)] %o A052549 print(a052549) # _Gennady Eremin_, Sep 10 2023 %Y A052549 Cf. A000225, A153894. %K A052549 easy,nonn %O A052549 0,2 %A A052549 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 %E A052549 More terms from _James Sellers_, Jun 06 2000