This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052553 #56 Jul 02 2025 16:01:58 %S A052553 1,1,0,1,1,0,1,2,0,0,1,3,1,0,0,1,4,3,0,0,0,1,5,6,1,0,0,0,1,6,10,4,0,0, %T A052553 0,0,1,7,15,10,1,0,0,0,0,1,8,21,20,5,0,0,0,0,0,1,9,28,35,15,1,0,0,0,0, %U A052553 0,1,10,36,56,35,6,0,0,0,0,0,0,1,11,45,84,70,21,1,0,0,0,0,0,0,1,12,55 %N A052553 Square array of binomial coefficients T(n,k) = binomial(n,k), n >= 0, k >= 0, read by upward antidiagonals. %C A052553 Another version of Pascal's triangle A007318. %C A052553 As a triangle read by rows, it is (1,0,0,0,0,0,0,0,0,...) DELTA (0,1,-1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938 and it is the Riordan array (1/(1-x), x^2/(1-x)). The row sums of this triangle are F(n+1) = A000045(n+1). - _Philippe Deléham_, Dec 11 2011 %C A052553 As a triangle, binomial(n-k, k) is also the number of ways to add k pierced circles to a path graph P_n so that no two circles share a vertex (see Lemma 3.1 at page 5 in Owad and Tsvietkova). - _Stefano Spezia_, May 18 2022 %C A052553 For all n >= 0, k >= 0, the k-th homology group of the n-torus H_k(T^n) is the free abelian group of rank T(n,k) = binomial(n,k). See the Math Stack Exchange link below. - _Jianing Song_, Mar 13 2023 %H A052553 Vincenzo Librandi, <a href="/A052553/b052553.txt">Table of n, a(n) for n = 0..5459</a> %H A052553 Math Stack Exchange, <a href="https://math.stackexchange.com/questions/1779632/homology-of-the-n-torus-using-the-künneth-formula">Homology of the n-torus using the Künneth Formula</a> %H A052553 Nicholas Owad and Anastasiia Tsvietkova, <a href="https://arxiv.org/abs/2205.03451">Random meander model for links</a>, arXiv:2205.03451 [math.GT], 2022. %H A052553 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A052553 As a triangle: T(n,k) = A026729(n,n-k). %F A052553 G.f. of the triangular version: 1/(1-x-x^2*y). - _R. J. Mathar_, Aug 11 2015 %e A052553 Array begins: %e A052553 1, 0, 0, 0, 0, 0, ... %e A052553 1, 1, 0, 0, 0, 0, ... %e A052553 1, 2, 1, 0, 0, 0, ... %e A052553 1, 3, 3, 1, 0, 0, ... %e A052553 1, 4, 6, 4, 1, 0, ... %e A052553 1, 5, 10, 10, 5, 1, ... %e A052553 As a triangle, this begins: %e A052553 1; %e A052553 1, 0; %e A052553 1, 1, 0; %e A052553 1, 2, 0, 0; %e A052553 1, 3, 1, 0, 0; %e A052553 1, 4, 3, 0, 0, 0; %e A052553 1, 5, 6, 1, 0, 0, 0; %e A052553 1, 6, 10, 4, 0, 0, 0, 0; %e A052553 ... %p A052553 with(combinat): for s from 0 to 20 do for n from s to 0 by -1 do printf(`%d,`, binomial(n, s-n)) od:od: # _James Sellers_, Mar 17 2000 %t A052553 Flatten[ Table[ Binomial[n-k , k], {n, 0, 13}, {k, 0, n}]] (* _Jean-François Alcover_, Dec 05 2012 *) %o A052553 (PARI) T(n,k) = binomial(n,k) \\ _Charles R Greathouse IV_, Feb 07 2017 %o A052553 (Magma) /* As triangle */ [[Binomial(n-k,k): k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Feb 08 2017 %Y A052553 The official entry for Pascal's triangle is A007318. See also A026729 (the same array read by downward antidiagonals). %Y A052553 As a triangle without zeros: A011973. %Y A052553 Cf. A052509, A054123, A054124, A008949. %K A052553 nonn,tabl,easy,nice %O A052553 0,8 %A A052553 _N. J. A. Sloane_, Mar 17 2000