cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052565 E.g.f. (1+x^3-x^4)/(1-x).

This page as a plain text file.
%I A052565 #22 Nov 10 2020 08:20:28
%S A052565 1,1,2,12,24,120,720,5040,40320,362880,3628800,39916800,479001600,
%T A052565 6227020800,87178291200,1307674368000,20922789888000,355687428096000,
%U A052565 6402373705728000,121645100408832000,2432902008176640000,51090942171709440000,1124000727777607680000
%N A052565 E.g.f. (1+x^3-x^4)/(1-x).
%C A052565 Number of partitions of n-set into "lists", in which every even list appears an odd number of times, cf. A000262. - _Alois P. Heinz_, May 10 2016
%H A052565 Alois P. Heinz, <a href="/A052565/b052565.txt">Table of n, a(n) for n = 0..450</a>
%H A052565 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=507">Encyclopedia of Combinatorial Structures 507</a>
%F A052565 E.g.f.: (-1+x^4-x^3)/(-1+x).
%F A052565 Recurrence: {a(1)=1, a(0)=1, (-1-n)*a(n)+a(n+1)=0, a(2)=2, a(4)=24, a(3)=12}.
%F A052565 a(n) = n! for n>3.
%p A052565 spec := [S,{S=Union(Sequence(Z),Prod(Z,Z,Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%p A052565 # second Maple program:
%p A052565 with(combinat):
%p A052565 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A052565       add(`if`(i::even and j::even, 0, b(n-i*j, i-1)*
%p A052565       multinomial(n, n-i*j, i$j)/j!*i!^j), j=0..n/i)))
%p A052565     end:
%p A052565 a:= n-> b(n$2):
%p A052565 seq(a(n), n=0..25);  # _Alois P. Heinz_, May 10 2016
%t A052565 a[n_] := If[n <= 3, {1, 1, 2, 12}[[n+1]], n!];
%t A052565 a /@ Range[0, 25] (* _Jean-François Alcover_, Nov 10 2020 *)
%Y A052565 Cf. A000262, A102760.
%K A052565 easy,nonn
%O A052565 0,3
%A A052565 encyclopedia(AT)pommard.inria.fr, Jan 25 2000