cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052632 E.g.f. 1/(1-x-x^5).

This page as a plain text file.
%I A052632 #15 Jun 03 2022 18:27:58
%S A052632 1,1,2,6,24,240,2160,20160,201600,2177280,29030400,439084800,
%T A052632 7185024000,124540416000,2266635571200,44460928512000,941525544960000,
%U A052632 21341245685760000,512189896458240000
%N A052632 E.g.f. 1/(1-x-x^5).
%H A052632 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=578">Encyclopedia of Combinatorial Structures 578</a>
%F A052632 E.g.f.: -1/(-1+x^5+x)
%F A052632 D-finite Recurrence: {a(1)=1, a(0)=1, a(3)=6, a(2)=2, a(4)=24, (-n^5-15*n^4-274*n-120-85*n^3-225*n^2)*a(n) +(-5-n)*a(n+4) +a(n+5)=0}
%F A052632 Sum(1/3381*(256+320*_alpha^4+400*_alpha^3+500*_alpha^2+625*_alpha)*_alpha^(-1-n), _alpha=RootOf(-1+_Z^5+_Z))*n!
%F A052632 a(n)=n!*A003520(n). - _R. J. Mathar_, Jun 03 2022
%p A052632 spec := [S,{S=Sequence(Union(Z,Prod(Z,Z,Z,Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%t A052632 With[{nn=20},CoefficientList[Series[1/(1-x-x^5),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Sep 13 2019 *)
%K A052632 easy,nonn
%O A052632 0,3
%A A052632 encyclopedia(AT)pommard.inria.fr, Jan 25 2000