This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052644 #31 Jan 05 2025 00:45:38 %S A052644 1,5,12,42,192,1080,7200,55440,483840,4717440,50803200,598752000, %T A052644 7664025600,105859353600,1569209241600,24845812992000,418455797760000, %U A052644 7469435990016000,140852221526016000 %N A052644 Expansion of e.g.f. (1+3x-3x^2)/(1-x)^2. %H A052644 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=590">Encyclopedia of Combinatorial Structures 590</a> %F A052644 E.g.f.: -(-3*x+3*x^2-1)/(-1+x)^2 %F A052644 Recurrence: {a(0)=1, a(1)=5, (-n^2-6*n-5)*a(n)+(n+4)*a(n+1)=0, a(2)=12}. %F A052644 a(n) = (n+4)*n!, n>0. %F A052644 G.f.: G(0) where G(k) = 1 + x*(k+1)*(k+4)/(1 - 1/(1 + (k+4)/G(k+1))); (continued fraction, 3-step). - _Sergei N. Gladkovskii_, Oct 16 2012 %F A052644 From _Amiram Eldar_, Nov 06 2020: (Start) %F A052644 Sum_{n>=0} 1/a(n) = 27/4- 2*e. %F A052644 Sum_{n>=0} (-1)^n/a(n) = 27/4 - 16/e. (End) %p A052644 spec := [S,{S=Prod(Sequence(Z),Union(Z,Z,Z,Sequence(Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20); %t A052644 With[{nn=20},CoefficientList[Series[(1+3x-3x^2)/(1-x)^2,{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Nov 06 2014 *) %Y A052644 Cf. sequences with formula (n + k)*n! listed in A282466. %K A052644 easy,nonn %O A052644 0,2 %A A052644 encyclopedia(AT)pommard.inria.fr, Jan 25 2000