cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A052710 A simple context-free grammar: difference between A049140 and its convolution square.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 14, 52, 201, 792, 3168, 12844, 52676, 218148, 910996, 3832072, 16222352, 69061200, 295477550, 1269863304, 5479456290, 23730089460, 103109502780, 449376255840, 1963920878400, 8604858967692, 37790621078040, 166329352089096, 733551460238308
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{C=Prod(B,B),S=Prod(C,C),B=Union(S,C,Z)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

G.f.: RootOf(-_Z+_Z^4+_Z^2+x) - RootOf(-_Z+_Z^4+_Z^2+x)^2 - x.
Recurrence: {a(1)=0, a(2)=0, a(4)=1, a(3)=0, a(5)=4, a(6)=14, (2304-4608*n-36864*n^2+73728*n^3)*a(n)+(46368+121536*n+59904*n^2-9216*n^3)*a(n+1)+(-79800-56512*n+59520*n^2+34048*n^3)*a(n+2)+(200516*n+185964+68544*n^2+7456*n^3)*a(n+3)+(-15024*n^2-22732*n+6864-2228*n^3)*a(n+4)+(-217*n^3-2604*n^2-10199*n-13020)*a(n+5)}.
a(n) = A049140(n) - A052708(n), n>1. - R. J. Mathar, Jan 13 2025

A052738 A simple context-free grammar in a labeled universe.

Original entry on oeis.org

0, 0, 2, 12, 120, 1920, 40320, 1028160, 30965760, 1077753600, 42551308800, 1878484608000, 91686654259200, 4902558383923200, 284994551761920000, 17895345882365952000, 1207064057173438464000, 87041570211234422784000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{B=Union(S,Z,C),S=Prod(B,B),C=Prod(S,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

Formula

E.g.f.: RootOf(-_Z+_Z^4+_Z^2+x)^2
Recurrence: a(1)=0; a(2)=2; a(3)=12; (9216*n^3-2496*n-576+1152*n^2+6144*n^4)*a(n) +(-9096-30320*n-28032*n^2-7936*n^3)*a(n+1) +(15488*n+6272*n^2+10404)*a(n+2) +(-3784*n-7600)*a(n+3) +589*a(n+4)=0; a(4)=120.
a(n) = n!*A052708(n). - R. J. Mathar, Oct 16 2013
Showing 1-2 of 2 results.