cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052755 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^3 * x^k / k ).

This page as a plain text file.
%I A052755 #16 Jun 01 2025 22:52:17
%S A052755 1,1,3,15,79,466,2872,18409,121197,815491,5581214,38737651,272012178,
%T A052755 1928939678,13794498614,99371002295,720411445866,5252194141946,
%U A052755 38482834469488,283223825607253,2092829973445703
%N A052755 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^3 * x^k / k ).
%C A052755 Old name was: A simple grammar.
%H A052755 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=711">Encyclopedia of Combinatorial Structures 711</a>
%F A052755 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^3 * x^k / k ). - _Ilya Gutkovskiy_, May 26 2023
%p A052755 spec := [S,{S=PowerSet(B),B=Prod(S,S,S,Z)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
%Y A052755 Cf. A005754, A052775, A052798.
%K A052755 easy,nonn
%O A052755 0,3
%A A052755 encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E A052755 New name from _Ilya Gutkovskiy_, May 26 2023