This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052760 #28 Sep 08 2022 08:44:59 %S A052760 0,0,0,0,24,120,420,1260,3472,9072,22860,56100,134904,319176,745108, %T A052760 1719900,3931680,8912352,20053404,44825940,99613960,220200120, %U A052760 484441188,1061157900,2315254704,5033163600,10905189100,23555209860,50734299672,108984793512 %N A052760 Expansion of e.g.f.: x^2*(exp(x)-1)^2. %C A052760 Original name: a simple grammar. %H A052760 Vincenzo Librandi, <a href="/A052760/b052760.txt">Table of n, a(n) for n = 0..1000</a> %H A052760 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=717">Encyclopedia of Combinatorial Structures 717</a> %H A052760 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (9,-33,63,-66,36,-8). %F A052760 E.g.f.: x^2*exp(x)^2-2*exp(x)*x^2+x^2. %F A052760 Recurrence: {a(1)=0, a(2)=0, a(3)=0, a(4)=24, (2*n^2+6*n+4)*a(n)+(6-3*n^2-3*n)*a(n+1)+(n^2-n)*a(n+2)}. %F A052760 For n>=3, a(n) = n*(n-1)*(2^n-8)/4. - _Vaclav Kotesovec_, Nov 27 2012 %F A052760 a(n) = n*A052749(n-1) = 2*n*(n-1)*Stirling2(n-2,2) for n >= 2. - _Andrew Howroyd_, Aug 08 2020 %p A052760 spec := [S,{B=Set(Z,1 <= card),S=Prod(B,B,Z,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); %t A052760 Part[#, Range[1, Length[#], 1]]&@(Array[#!&, Length[#], 0] #)&@CoefficientList[Series[x^2 Exp[x]^2 - 2 Exp[x] x^2 + x^2, {x, 0, 30}], x]//ExpandAll (* _Vincenzo Librandi_, May 05 2013 *) %o A052760 (Magma) [0,0,0] cat [n*(n-1)*(2^n-8)/4: n in [3..30]]; // _Vincenzo Librandi_, May 05 2013 %o A052760 (PARI) a(n) = if(n<4, 0, n*(n-1)*(2^n-8)/4); \\ _Joerg Arndt_, May 06 2013 %Y A052760 Cf. A052749. %K A052760 easy,nonn %O A052760 0,5 %A A052760 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 %E A052760 More terms from _Vincenzo Librandi_, May 05 2013 %E A052760 Name changed by _Andrew Howroyd_, Aug 08 2020