This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052775 #14 May 27 2023 05:49:23 %S A052775 1,1,4,26,184,1443,11888,101859,897529,8085103,74113656,689134849, %T A052775 6484074328,61620879930,590628242876,5703027934533,55423681958153, %U A052775 541689157201498,5320989368024126,52503593913927276 %N A052775 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^4 * x^k / k ). %C A052775 Old name was: A simple grammar. %H A052775 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=732">Encyclopedia of Combinatorial Structures 732</a> %F A052775 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^4 * x^k / k ). - _Ilya Gutkovskiy_, May 26 2023 %p A052775 spec := [S,{B=Prod(Z,S,S,S,S),S=PowerSet(B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); %Y A052775 Cf. A005754, A052755, A052798. %K A052775 easy,nonn %O A052775 0,3 %A A052775 encyclopedia(AT)pommard.inria.fr, Jan 25 2000 %E A052775 New name from _Ilya Gutkovskiy_, May 26 2023