cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052775 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^4 * x^k / k ).

This page as a plain text file.
%I A052775 #14 May 27 2023 05:49:23
%S A052775 1,1,4,26,184,1443,11888,101859,897529,8085103,74113656,689134849,
%T A052775 6484074328,61620879930,590628242876,5703027934533,55423681958153,
%U A052775 541689157201498,5320989368024126,52503593913927276
%N A052775 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^4 * x^k / k ).
%C A052775 Old name was: A simple grammar.
%H A052775 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=732">Encyclopedia of Combinatorial Structures 732</a>
%F A052775 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^4 * x^k / k ). - _Ilya Gutkovskiy_, May 26 2023
%p A052775 spec := [S,{B=Prod(Z,S,S,S,S),S=PowerSet(B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
%Y A052775 Cf. A005754, A052755, A052798.
%K A052775 easy,nonn
%O A052775 0,3
%A A052775 encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E A052775 New name from _Ilya Gutkovskiy_, May 26 2023