cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052798 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^5 * x^k / k ).

This page as a plain text file.
%I A052798 #14 May 27 2023 05:51:06
%S A052798 1,1,5,40,355,3475,35836,384436,4243860,47905385,550404336,6415528666,
%T A052798 75677788275,901728156490,10837196405920,131215506276862,
%U A052798 1599078373019073,19598996116313001,241433496694878595
%N A052798 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^5 * x^k / k ).
%C A052798 Old name was: A simple grammar.
%H A052798 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=755">Encyclopedia of Combinatorial Structures 755</a>
%F A052798 G.f. A(x) satisfies: A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k)^5 * x^k / k ). - _Ilya Gutkovskiy_, May 26 2023
%p A052798 spec := [S,{S=PowerSet(B),B=Prod(Z,S,S,S,S,S)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
%Y A052798 Cf. A005754, A052755, A052775.
%K A052798 easy,nonn
%O A052798 0,3
%A A052798 encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E A052798 New name from _Ilya Gutkovskiy_, May 26 2023