This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A052805 #16 Apr 18 2017 07:04:08 %S A052805 1,1,1,3,7,21,64,204,666,2236,7625,26419,92644,328370,1174234,4231898, %T A052805 15354424,56042372,205626906,758021598,2806143522,10427671924, %U A052805 38882984840,145443260702,545598228056,2052086677666,7736986142773,29236241424977 %N A052805 If B is a collection in which there are C(n-1) [Catalan numbers, A000108] things with n points, a(n) is the number of subsets without repetition of B with a total of n points. %C A052805 Euler transform of sequence [1,0,2,4,14,40,132,424,1430,...] (C(n-1) if n odd, C(n-1)-C(n/2-1) if n even). %H A052805 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=766">Encyclopedia of Combinatorial Structures 766</a> %F A052805 a(n)=(1/n)*Sum_{k=1..n} a(n-k)*b(k), n>0, a(0)=1, b(k)=Sum_{d|k} (-1)^(k/d+1)*binomial(2*d-2, d-1). - _Vladeta Jovovic_, Jan 17 2002 %F A052805 G.f. A(x)=exp(Sum_{k>0} -(-1)^k* C(x^k)/k) where C(x)=(1-sqrt(1-4x))/2= g.f. A000108 (offset 1). %F A052805 G.f.: Product_{k>=1} (1+x^k)^(1/k*binomial(2*k-2, k-1)). - _Vladeta Jovovic_, Jan 17 2002 %p A052805 spec := [S,{C=Sequence(B),B=Prod(C,Z),S=PowerSet(B)},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20); %t A052805 ClearAll[a]; b[k_] := Sum[ (-1)^(k/d + 1)*Binomial[2*d - 2, d - 1], {d, Divisors[k]}]; a[0] = 1; a[n_] := a[n] = (1/n)*Sum[a[n - k]*b[k], {k, 1, n}]; Table[a[n], {n, 0, 27}] (* _Jean-François Alcover_, Oct 08 2012, after _Vladeta Jovovic_ *) %o A052805 (PARI) a(n)=local(A); if(n<1,!n,A=sum(k=1,n,(2*k-2)!/k!/(k-1)!*x^k,x*O(x^n)); polcoeff(exp(sum(k=1,n,-(-1)^k*subst(A,x,x^k)/k)),n)) %Y A052805 Cf. A000108, A052854. %K A052805 easy,nonn,nice %O A052805 0,4 %A A052805 encyclopedia(AT)pommard.inria.fr, Jan 25 2000